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ABSTRACT 

Many American students struggle with reading, particularly in the area of comprehension. As such, early 

identification of reading difficulties, use of evidenced-based interventions, and monitoring of student reading 

progress over time is essential. Curriculum-based measurement (CBM) is a technically adequate, efficient tool 

whose features and design make it a good candidate for early identification and progress monitoring purposes, 

especially within a response to intervention framework. However, there is still some uncertainty regarding the utility 

of reading CBM as progress monitoring tools. Specifically, the literature has suggested that variability in the 

difficulty of CBM materials may influence how well these tools measure student growth over time. The present 

study aimed to reduce CBM variability by using field-testing and rank-ordering of performance means to create two 

equivalent second-grade reading CBM passage sets. These sets were derived from larger pools of extant, 

commercially-available passage sets. One passage set included oral reading fluency and story recall tasks. The 

second passage set was comprised of Maze tasks. These passage sets were then used to monitor progress in second-

grade students who were at-risk for reading problems. Scores from each type of task were also used to determine 

which was the best predictor of student performance in reading comprehension. Hierarchical linear modeling was 

used to analyze student growth on CBM measures, as well as predict reading comprehension. Results indicated that 

only Maze tasks were sensitive to individual student growth over the study, and were the strongest predictors of 

reading comprehension in this sample compared to oral reading fluency and recall. Implications, limitations, and 

future directions are also discussed. 
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INTRODUCTION 

The National Reading Panel (NRP; National Institute of Child Health and Human Development, 2000) 

reviewed the extant reading research with the goal of identifying the most effective ways of teaching children to 

read. After analyzing more than 100,000 studies, the panel identified five major areas of instruction that appear to be 

essential for reading: phonemic awareness, phonics, fluency, vocabulary, and comprehension. The NRP’s findings 

regarding these “Big 5” areas of reading have made significant contributions to the formulation of educational 

curricula (i.e., Common Core State Standards, National Governors Associate Center for Best Practices, 2010) and 

the design of interventions aimed at improving reading performance. Despite these efforts and education laws 

designed to promote student achievement (i.e., Every Student Succeeds Act of 2015), American youth continue to 

struggle with reading. According to the 2015 Nation’s Report Card, only 36% of fourth-graders and 34% of eighth-

graders in the United States scored at or above a proficient level, indicating they are able to draw conclusions and 

make evaluations about what they read based on their understanding of the text (National Center for Education 

Statistics, 2015).  

While these statistics are daunting at a surface level, their deeper implications are a cause for even greater 

concern. In upper elementary, middle school, and high school grades, student success becomes increasingly 

dependent on general reading ability. For instance, poor readers are not only likely to have worse outcomes in 

English and literature courses, but also in other subjects that rely on content-specific vocabulary and comprehension, 

such as geography, history, and science (Espin & Deno, 1993). As students progress through school and have more 

of their success dependent on reading and understanding various texts, Matthew Effects, or “the rich-get-richer 

while the poor-get-poorer,” begin to emerge (Stanovich, 1986). Poor reading ability has also been associated with 

other adverse outcomes, including placing students at a higher risk for school dropout and increased rates of 

emotional and behavioral problems compared to typical readers (Arnold et al., 2005; Daniel et al., 2006). 

Reading Comprehension 

Given its essentiality in the reading process and its extension into nearly every other subject during later 

grades, reading comprehension has long been a major focus of educational research, assessment, and intervention. 

Meneghetti, Caretti, and De Beni (2006) define reading comprehension as “a complex cognitive ability requiring the 

capacity to integrate text information with the knowledge of the listener/reader and resulting in the elaboration of a 

mental representation (p. 291).” The operative term in this definition of comprehension seems to be complex, as 
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evidenced by research efforts aimed at identifying and measuring individual components that contribute to 

comprehension. In an effort to simplify the complexity of comprehension, Gough and Tunmer (1986) proposed a 

framework for better understanding reading, which they term the “simple view” of reading. In their model, reading 

comprehension is the product of decoding skills and listening comprehension. Numerous researchers have used this 

framework to design studies to better understand the construct of reading comprehension, and while the simple view 

of reading has been shown to be a useful framework that is still in frequent use, it may be too simple to capture the 

complexities of comprehension (Johnston, Barnes, & Desrochers, 2008). 

  Numerous other studies (e.g., Berninger, Abbott, Vermeulen, & Fulton, 2006; Catts, Herrera, Nielsen, & 

Bridges, 2015; Kendeou, Van den Broek, White, & Lynch, 2009; Meneghetti et al., 2006; Nation, Cocksey, Taylor, 

& Bishop, 2010; Tilstra, McMaster, Van den Broek, Kendeou, & Rapp, 2009;) have been conducted with the goal of 

identifying specific components of reading comprehension and understanding how these components relate to future 

comprehension. Overall, such studies have found that early skills in oral language (e.g., listening comprehension; 

Catts et al., 2015; Kendeou et al., 2009), vocabulary (Berninger et al., 2006; Catts et al., 2015), and decoding 

(Kendeou et al., 2009) show strong relationships to future comprehension abilities.  

Furthermore, both Tilstra et al. (2009) and Berninger et al. (2006) found that reading fluency contributed 

significant variance in measures of reading comprehension. Tilstra et al. (2009) found this for students in fourth, 

seventh, and ninth grades, while Berninger and colleagues (2006) found similar effects for at-risk second graders. 

Despite the importance of reading fluency, these authors cautioned that reading fluency is necessary, but may not be 

sufficient, for the successful development reading comprehension in these students. 

Indeed, a longitudinal study conducted by Nation et al. (2010) also suggests that indicators of reading 

fluency and accuracy may not necessarily detect future reading comprehension difficulties. Results of their study 

showed that students who were poor comprehenders at age 5 years were also poor comprehenders at age 8 years, 

despite showing age-appropriate levels of accuracy and fluency in word reading. Given these findings, the authors 

recommend early assessment for weaknesses in oral language skills in an effort to better identify students at risk for 

reading comprehension difficulties. 

Another study (Catts et al., 2015) echoes the recommendations provided by Nation et al. (2010) in 

suggesting that early screening and assessment for oral language skills occur in addition to screening and assessment 

of early literacy skills such as alphabetic principle and phonological awareness. Catts and colleagues indicate that 
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while early literacy screening is helpful in predicting future comprehension difficulties, the addition of oral language 

skills screenings may add to this prediction.  

  Not only does reading comprehension seem to depend on a variety of skills, but it appears that the 

contribution of these skills depends on other factors, including a reader’s age and skill level. Tilstra et al. (2009) 

found that relationships between various reading skills and reading comprehension vary by student grade level, in 

that more basic reading skills (e.g., decoding) are better predictors of comprehension in fourth graders, but that 

higher-level skills (e.g., listening comprehension) becomes a stronger predictor in later grades. In addition, a study 

by Kim, Wagner, and Foster (2011) investigated predictors of reading comprehension in first grade students. 

Overall, they found that word-list reading fluency predicted reading comprehension better for average readers than 

skilled readers, while listening comprehension predicted overall comprehension better for skilled readers compared 

to average readers.  

Given the complex nature of comprehension, it can be difficult to assess and intervene. As such, substantial 

research efforts have been dedicated toward the identification of evidence-based assessments and interventions for 

reading comprehension. 

Reading comprehension assessment and intervention. While comprehension is broadly interpreted as an 

understanding of what one reads, there is still debate regarding the best way to measure this construct (Keenan, 

Betjemann, & Olson, 2008). Indeed, there are several different “comprehension” tests and subtests which 

purportedly measure student understanding; however, these tests go about measuring comprehension in very 

different ways. Common strategies for measuring comprehension include passage/story retell, sentence completion, 

vocabulary skills, decoding, cloze tasks, true/false sentence recognition, sentence verification tasks, multiple-choice 

questions, and open-ended questions. There is an ongoing debate regarding which method is best, and each has its 

own advantages and disadvantages (see Cain & Oakhill, 2006 for a summary). 

With each method, there are subtle differences in the components of comprehension measured and in the 

types of language and cognitive skills required to perform the task. In fact, Keenan and colleagues (2008) compared 

several common, standardized comprehension measures and found that these tests not only differ in the skills that 

they measure, but in some cases the same tests assessed different skills depending on the reader’s developmental 

level. As such, the authors recommend that consumers should consider what they are seeking to measure and how 

when deciding on a measure of reading comprehension. 
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The majority of reading remediation in early elementary grades focuses on phonemic awareness, phonics, 

decoding, and fluency. For students in upper elementary (i.e., grades 4-5), however, interventions targeting reading 

comprehension become more prominent (Wanzek, Wexler, Vaughn, & Ciullo, 2010). This finding is not surprising 

given that a shift from “learning to read” to “reading to learn” typically happens between third and fourth grades 

(Chall & Jacobs, 2003). It is unclear whether this shift that is due to changes in student ability or changes in 

educational expectations, as evidenced by the emphasis on fourth-grade standardized tests. Regardless, it is clear 

that not all students are able to effectively shift into the “reading to learn” dynamic. Wanzek et al. (2010) 

recommend that, for these readers, it is important to identify specific skill deficits that are resulting in poor reading 

and provide evidence-based, multi-component interventions as appropriate.  

Identifying Students in Need of Special Education Services in Reading 

For students who exhibit substantial difficulties with reading, more intensive educational supports in the 

area of reading may be warranted. If so, these students may qualify for special education services under a 

verification of Specific Learning Disability (SLD) in reading. A recent report of students with disabilities indicates 

that more than 5.8 million U.S. students aged 6-21 are classified as having a disability. Approximately 40% of these 

students are receiving services under a verification of SLD, with the majority having an SLD in reading (U.S. 

Department of Education, 2014).  

Changes in special education legislation have had a major impact on the identification of students with 

SLD, particularly following the reauthorization of the Individuals with Disabilities Education Act in 2004. This 

legislation, known as the Individuals with Disabilities Education Improvement Act of 2004 (IDEIA; P.L. 108-446), 

gave local education agencies a choice regarding the process by which they identify students with a specific learning 

disability. The reauthorization removed the previous requirement of identifying the student based on a significant 

intellectual/achievement discrepancy and added the option of using a process of identification based on the child’s 

response to scientific, research-based intervention (U.S. Department of Education, 2004).  

Response to Intervention 

For local education agencies opting to use this updated process, Response to Intervention (RTI) is a useful 

framework for identification of SLD. RTI is an educational problem-solving process that involves multiple tiers of 

increasingly intense educational and behavioral supports (Germann, 2010). While RTI gained research and 

professional attention following its inclusion in IDEIA, it is also a useful tool for large-scale school improvement, in 
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both general and special education (Gresham, Reschly, & Shinn, 2010). In fact, Fletcher and Vaughn (2009) indicate 

that the primary goal of RTI in schools is to effectively prevent and remediate academic and behavioral concerns. 

They indicated a secondary goal of RTI as a way of gathering data that assists in decision-making and the 

identification of students with SLD. In order to accomplish these goals, RTI employs a standard set of strategies, 

including: tiered systems of support matched to student need, provision of evidence-based interventions with 

treatment integrity, problem solving, and data based decision-making. (Fletcher & Vaughn, 2009; Gresham et al., 

2010; Shinn, 2010).  

In general, RTI frameworks identify three tiers of support. Tier 1 includes core instructional interventions 

that are available to all students (i.e., universal), and are intended to be preventative and proactive. This tier also 

involves universal screening, in which all students are administered an assessment tool designed to identify students 

at risk for academic or behavioral problems (Fletcher & Vaughn, 2009). It is estimated that approximately 80-85% 

of students will respond adequately to Tier 1 interventions and not require additional supports. Based on data 

collected during Tier 1, students who are not showing adequate progress and are identified as requiring a greater 

level of support advance to Tier 2 and receive more targeted academic or behavioral interventions. These 

interventions are more intensive than Tier 1 interventions and are commonly administered in a small-group setting. 

It is estimated that 10-15% of students will require Tier 2 supports. In accordance with policies of data based 

decision-making, students in this tier are assessed regularly on some academic or behavioral outcome. This process 

is known as progress monitoring and helps schools objectively determine whether the student is responding to 

intervention efforts. Finally, students who do not respond to Tier 2 advance to Tier 3, where they receive intensive, 

individualized intervention. An estimated 5% of students require this level of support (Sugai, Horner, & Gresham, 

2002).  

Specific to the use of RTI in the identification of SLD, schools typically use a dual-discrepancy approach. 

In this approach, students must exhibit (a) severe low achievement compared to their peers, and (b) show evidence 

of nonresponse to evidence-based intervention efforts implemented with integrity (Ardoin, Christ, Morena, Cormier, 

& Klingbeil, 2013). The first discrepancy can be identified through universal screening in Tier 1, while progress 

monitoring in subsequent tiers provides evidence of the second discrepancy (Shinn, 2010). Opponents of the use of 

RTI in the identification of SLD maintain that comprehensive psychometric assessment is essential in identifying 

SLD, and suggest that RTI should not be used as a diagnostic model. Further, these opponents indicate that RTI 
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should be used only as a remediation model during the pre-referral stage, which includes the time prior to students 

being referred for a special education evaluation (Kavale, Kauffman, Bachmeir, & LeFever, 2008).  

Despite ongoing controversy about the appropriateness of RTI in the identification of SLD (Fletcher & 

Vaughn, 2009; Kavale et al., 2008), RTI and its characteristic components (e.g., treatment integrity and data based 

decision-making) are becoming widespread in both research and practice. The current study focuses on data based 

decision-making, and, more specifically, monitoring student progress in reading.  

Best practices in data based decision-making. The two major components of data based decision-making 

in RTI are universal screening and progress monitoring. The purpose of universal screening is to identify children 

who are functioning significantly below the academic or behavioral standards expected for their grade or age. 

Universal screening typically involves all students in a particular school building or district being administered an 

academic or behavioral indicator three times per year: once in the fall, winter, and spring. Results of these 

screenings help identify students who may be in need of more intensive services. Best practices for universal 

screening include consideration of three key features when selecting a screening tool: the appropriateness of the tool 

for the intended use, technical adequacy of the tool, and usability (Glover & Albers, 2007). Shinn (2010) indicates 

that once schools identify a technically adequate tool, only then should they consider time- and cost-efficiency as a 

factor. 

Progress monitoring is the repeated, systematic assessment of behavior (National Center on Intensive 

Intervention, 2012). It is an evidence-based practice that allows educators to set goals, assess growth, evaluate 

effectiveness of intervention, and inform instructional changes (Deno 2003; Shapiro, Hilt-Panahon, & Gischlar, 

2010). Within the context of RTI, it is recommended that schools explicitly use scientifically based assessment tools 

to monitor progress at each tier, and that these same tools be used across tiers (Shinn, 2010). One of the most 

common assessment tools used for both universal screening and progress monitoring purposes is curriculum-based 

measurement.  

Curriculum-based Measurement 

Curriculum-based measurement (CBM) is a general outcome measure used to assess student performance 

in basic academic skill areas (i.e., reading, math, spelling, writing) using a set of standardized measurement probes 

(Deno, 1985; Hintze, Christ, & Methe, 2006). It is important to note the distinction between general outcome 

measures such as CBM and specific subskill mastery approaches. General outcome measures represent a broad 
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construct, such as reading ability, and provide indications of overall functioning in a particular skill area (Fuchs, 

2004). Specific subskill mastery measures often include small domains of test items of equal difficulty that are 

matched to a particular learning task and used to indicate mastery of an individual subskill (Hintze et al., 2006). As 

such, while certain CBM types may be used as indicators for specific outcomes (i.e., fluency, comprehension), they 

are actually conceptualized as multidimensional, integrated measures of a particular construct. Despite this 

distinction by experts in the development of CBM, these measures are often categorized by their intervention target 

(January & Ardoin, 2012). 

Shinn (2002) uses the metaphor of CBM as a thermometer in that it is helpful at identifying the presence 

and severity of a problem, can be used to set goals and monitor changes in functioning, and is indicative of return to 

normal functioning. Like a thermometer, CBM is not a diagnostic tool, but rather an assessment of overall 

functioning and an indicator of a need for further assessment or treatment.  

The history of CBM dates back to the early 1980s, when Stanley Deno and a group of graduate students at 

the University of Minnesota began to develop tools that could help educators assess special education students’ 

progress toward goals on their individualized education plan (IEP) and evaluate the effectiveness of special 

education programming (Fuchs, 2004; Marston, Mirkin, & Deno, 1984; Parker, Hasbrouk, & Tindal, 1992). In other 

words, CBM was originally designed as a progress monitoring tool. CBM is a useful tool for progress monitoring 

because it was designed as a dynamic indicator of student performance; therefore, it is sensitive to short-term effects 

of instruction (Deno, 2003; Hintze et al., 2006). In addition, CBM meets the National Center for Student Progress 

Monitoring’s standards for scientifically based progress monitoring. These standards require that a measure must be: 

reliable, valid, contain at least nine alternate but equivalent forms, be sensitive to student improvement over short 

periods of time, be linked to benchmarks, specify rates of improvement for various student groups, and show 

evidence that their use results in instructional planning and improves student achievement (Shinn, 2010).  

 In the thirty-plus years since its inception, CBM use has expanded considerably. While progress 

monitoring is still a common use of CBM, Deno (2003) identified additional uses, including universal screening, 

development of norms, and program evaluation. Stecker, Fuchs, and Fuchs (2005) found that teachers who use CBM 

data to inform instructional change effected greater growth in student outcomes than teachers who used their own 

methods of progress monitoring and recommendations for instructional change. CBM is used for students from 

preschool through high school and for students from diverse backgrounds, including those learning the English 
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language (McMaster, Wayman, & Cao, 2006; Wiley & Deno, 2005). Over time, the content of CBM materials has 

expanded to include early literacy, early numeracy, reading, math, and writing skills. Regardless of their use or 

content, CBM maintains certain characteristics. According to Deno (2003), CBM is defined by the use of technically 

adequate materials, standardized measurement tasks, standardized multiple equivalent samples, and time-efficient 

administration and scoring methods.  

Curriculum-based measurement in reading. As mentioned above, a variety of CBM measures within the 

area of reading are currently available, including those that serve as indicators of early literacy skills (i.e., letter 

naming, letter sounds, phonemic awareness, phonics, and decoding), as well as more advanced skills such as fluency 

and comprehension. Of all subject areas for which CBM is available, reading has received the most research 

attention (Shinn, 2010). The two most common types of reading CBM measures are the read aloud measure and the 

Maze task. Another CBM reading measure, retell fluency, is also described.  

Read aloud measures. The most commonly used CBM measure for reading is the read aloud measure 

(Reschly, Busch, Betts, Deno, & Long, 2009). This measure is also referred to as oral reading fluency (ORF), R-

CBM, or CBM-R. For purposes of this study, this method of measurement will simply be referred to as “read aloud” 

unless the read aloud measure comes from a particular publisher.  

Standard administration of a read aloud measure involves a student reading out loud from a typed, 150-400-

word passage for one minute. As the student reads, the administrator marks any mispronunciations, word omissions, 

word substitutions, and hesitation greater than 3 seconds on any single word (Wayman, Wallace, Wiley, Tichá, & 

Espin, 2007). At the end of one minute, the student stops reading and the administrator calculates the number of 

words the student read correctly, resulting in a score of words read correctly per minute, or WRCM. Historically, 

read aloud passages were taken from curriculum materials such as basal readers (Hintze, Shapiro, Conte, & Basile, 

1997). Now, multiple options exist for read aloud passages, including the commercially available AIMSweb (Howe 

& Shinn, 2002) and the Dynamic Indicators of Basic Early Literacy Skills (DIBELS; Good & Kaminski, 2002; 

2011) series. Appendix A depicts a standard DIBELS read aloud measure.  

Read aloud passages are typically administered based on the student’s grade level or instructional level; 

however, Wayman et al. (2007) found that it is not necessary for CBM materials to be directly matched to a 

student’s instructional level in order to maintain technical adequacy of the measure. In general, their review 
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indicates that reliability and validity remains intact if the CBM passages remain within one grade level above or 

below the student’s instructional level. 

Wayman, and colleagues (2007) conducted a literature synthesis of CBM in reading and found that, to date, 

research efforts have focused overwhelmingly on read aloud techniques compared to other reading measures.  

Evidence from the studies included in this synthesis suggests that read aloud is a reliable, valid predictor of student 

performance for elementary students in grades 2-5. While the literature supports the use of read aloud measures as a 

screening tool, results are mixed regarding its utility as a reliable, valid indicator of student progress. In fact, Ardoin 

et al. (2013) indicate that evidence reported in the literature supporting the use of read aloud as a progress 

monitoring tool may have been overgeneralized. These concerns will be addressed further in subsequent sections.  

Maze measures. A second CBM reading measure is the Maze task. Although Maze has received less 

research attention and practical use than read aloud, it has been shown to be a reliable and valid measure of general 

reading ability (Fuchs & Fuchs, 1992). The Maze task evolved from cloze tasks (Parker et al., 1992), which consist 

of a typed passage that has every nth word deleted throughout the passage. In a cloze task, respondents are required 

to write in each missing word such that the sentence is complete and both the sentence and passage make sense. This 

task was modified and standardized for use in schools as a general outcome measure of reading, and in doing so 

became known as the “Maze” task.  

Maze has undergone significant adjustments since its conception in the 1970s. For instance, early Maze 

tasks were commonly derived from basal readers and had varied deletion ratios ranging from 1/5 to 1/46. Parker and 

colleagues (1992) reviewed the history and use of Maze and made recommendations for development of future 

measures. Specifically, they recommended that Maze probes be between 250-400 words in length, only contain 

deleted content-related words (i.e., nouns, main verbs, adjectives, and adverbs), include four distractors for each 

deleted word, and not place a time limit on Maze passage completion. Individuals familiar with the composition and 

administration procedures of most commercially available Maze passages today know that some of these 

recommendations have been upheld, while others have not.  

The most common Maze tasks currently in use involve a 150-400-word passage that has the first sentence 

intact. Starting with the first word of the second sentence, every 7th word is deleted and replaced with three words: 

one correct word and two distracter words. Maze administration typically involves a student reading the passage 

silently for a specified time limit, usually 1-3 minutes. As the student reads, he or she must choose (i.e., circle) the 
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correct word from the three choices at every 7th word. Like read aloud, standardized Maze passages are available to 

consumers through companies like AIMSweb (Howe & Shinn, 2002) and Dynamic Indicators of Basic Early 

Literacy Skills (DIBELS; Good & Kaminski, 2002; 2011). Appendix B demonstrates a sample Maze passage. 

While Maze has been less frequently researched than read aloud, it does have some perceived benefits 

compared to read aloud measures. First, because Maze is a silent reading, time-limited assessment, it can be group-

administered, whereas read aloud must be administered individually (Wayman et al., 2007). In addition, computer-

based administration of Maze is currently available, making it even more efficient to administer and score. 

According to Parker and colleagues (1992), teachers may also perceive Maze as having greater face validity as a 

measure of reading comprehension compared to read aloud measures, which are commonly perceived as indicators 

of reading fluency. This perception is likely due to the test’s construction and outcomes rather than test content; 

however, it has resulted in more frequent use of Maze in the upper elementary grades where comprehension 

becomes an outcome of interest. In fact, the DIBELS version of Maze, “Daze,” is currently only available for third 

grade and beyond. 

Just as the use of read aloud measures for progress monitoring is still unresolved by the literature, blanket 

recommendations about the use of Maze are hindered by mixed results regarding its utility. These mixed results 

have resulted in ongoing controversy regarding the best CBM measure to use for screening and progress monitoring, 

particularly when the target outcome is reading comprehension (Ardoin et al., 2004; January & Ardoin, 2012; 

Jenkins & Jewell, 1993; Marcotte & Hintze, 2009).  

Retell measures. An additional method of assessing reading is retell fluency. This method is usually 

administered in conjunction with a read aloud measure (Bellinger & DiPerna, 2011). Standard administration 

involves a student reading a passage aloud for one minute, as in read aloud. Then, at the end of the minute, students 

are asked to recall as much of the story as they can remember, either orally or by writing it down. The purpose of 

retell is to gauge a reader’s understanding of the passage they have just read (i.e., comprehension) and to identify 

students who may be reading fluently but are not understanding. In fact, some describe retell methods not as a 

general outcome measure but as a skill-specific assessment of reading comprehension (Roberts, Good, & Corcoran, 

2005). The oral retell fluency (RTF) procedure is commonly used and recommended in the DIBELS system (Good 

& Kaminski, 2002; 2011); however, research regarding the utility of retell is limited and mixed.  
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Reed (2011) reviewed the research on the psychometric properties of retell measures and found high levels 

of variability in administration and scoring procedures. Overall, the results of the review indicated that retell 

measures on the whole require further validation. Roberts et al. (2005) found modest support for the use of retell 

measures in predicting broad reading achievement in a sample of first graders. Bellinger and DiPerna (2011) 

assessed whether RTF could reliably predict reading comprehension in fourth grade students. Their results found a 

low correlation between RTF measures and reading comprehension criterion measures (r = .33) Further, they found 

significant differences between RTF scores based on live versus recorded administrations, indicating reduced levels 

of examiner accuracy during live administrations. As such, the authors caution that poor reliability between raters 

and scores on RTF could affect its utility as a reliable and valid reading CBM measure. A sample RTF scoring 

procedure is depicted in Appendix C. 

Evidence for Reading CBM Measures within an RTI Framework 

Fuchs (2004) identified three stages of research for substantiating the use of any measure for the purposes 

of progress monitoring. The first stage investigates the technical features of a static score (i.e., universal screening). 

Stage 2 assesses the technical features of slope, in which changes in student scores over time are associated with 

improvement in the domain of interest. Finally, Stage 3 involves the assessment of instructional utility, or whether 

practitioners can use the progress monitoring tool in questions to improve instruction and intervention, and thereby 

impact student achievement. Subsequent sections present the existing evidence of reading CBM at each stage. 

Stage 1 evidence of reading CBM measures as static predictors of achievement. As indicated earlier, 

the majority of research on read aloud supports it as a predictor of reading achievement based on a static 

measurement. Reschly, et al. (2009) conducted a meta-analytic review of the use of read aloud measures in 

predicting student reading achievement and found similar evidence to Wayman et al. (2007). Reschly et al. (2009) 

reviewed 41 studies and found that read aloud consistently showed a moderately high correlation with standardized 

tests of reading achievement (r = .67). In addition, they investigated a number of variables that could potentially 

moderate the relationship between read aloud and reading achievement tests. They found that read aloud shows a 

higher correlation with national tests of achievement compared to state tests. Another notable finding from the 

Reschly et al. (2009) review was that there were no significant differences between read aloud performance and 

student scores on various reading subtests (i.e., comprehension, decoding, and vocabulary). The authors posit that 
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these results speak to the conceptualization of read aloud as a general outcome measure of reading ability rather than 

a measure of specific skills such as decoding or comprehension. 

Jenkins and Jewell (1993) examined the relationship between reading CBM measures (i.e., read aloud and 

Maze) and reading achievement in 335 students in grades 2-6. They administered three R-CBM passages and three 

Maze passages to each student. Their results indicated that oral reading was more strongly correlated with reading 

achievement for students in grades 2-4 than grades 5 and 6. The authors observed that, as grade level increased, 

correlations between oral reading fluency and reading achievement decreased. They found that correlations between 

Maze scores and reading achievement remained relatively consistent across grades.  

Hosp and Fuchs (2005) conducted a study similar to that of Jenkins and Jewell (1993) in order to evaluate 

whether read aloud was differentially predictive across and within grades. They administered reading measures to 

310 students in grades 1-4 and found that, across grades, there was no significant change in the relationship between 

read aloud measures and comprehension outcome measures. Overall and across grades, CBM had the strongest 

relationship with total reading scores, not with any individual skill. Like the findings from Reschly et al. (2009), 

these results support reading CBM as a general outcome measure. 

Graney, Missall, Martinez, and Bergstrom (2009) evaluated within-year growth for students in grades 3-5 

using both read aloud and Maze measures. They collected benchmark CBM data three times per year (i.e., fall, 

winter, and spring) over the course of two years. At the end of their study, they found no significant differences in 

read aloud growth rates across grade levels. In contrast, they found that growth rates for Maze increased with each 

successive grade level. They concluded that Maze may be a more sensitive measure than read aloud for older 

elementary students. 

Wiley and Deno (2005) used read aloud and Maze measures to predict third-and fifth-graders’ performance 

on state standards tests. Their sample included both English learners and non-English learners. Results showed that 

both Maze and read aloud showed moderate to moderately strong correlations with a state test in reading. In 

addition, the authors found that read aloud was a stronger predictor for both 3rd and 5th grade English learners, and 

that Maze added to the predictive abilities of read aloud for both grades of non-English learners, but not for English 

learners.  

Christ, Silberglitt, Yeo, and Cormier (2010) found even more factors that influence universal screening 

scores. They used read aloud benchmark data to investigate growth patterns for students in grades 2-6. In general, 
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they found that students not receiving special education services showed a higher growth rate than students 

receiving these services. They also found that students in earlier grades show a higher rate of growth on read aloud 

measures compared to older elementary students. Finally, they observed a seasonal effect, in that more growth was 

observed from fall-to-winter than winter-to-spring. This seasonal effect was more prominent in younger students 

compared to older students.  

Together, these findings indicate that the predictive utility of reading CBM measures is dependent on 

several factors, including student grade level, the skills being assessed by the criterion measure, season, and student 

abilities.  

Universal screening with reading CBM. In addition to predicting future achievement, static CBM 

measurements can be used to identify students at risk for reading problems. Jenkins, Hudson, and Johnson (2007) 

reviewed studies on the classification accuracy of reading screeners for students in grades K-6 and found that; 

overall, the CBM reading measures commonly used for universal screening are “good but not great” (p. 598).  

Specifically, the review indicated that administering only read aloud screening measures resulted in inadequate 

classification accuracy. As such, the authors suggest that a screening battery consisting of more than one type of 

reading CBM type may be better at identifying readers who are at risk.    

Decker, Hixson, Shaw, and Johnson (2014) investigated the use of a multiple-measure screening battery 

with seventh- and eighth-graders and found that administering both Maze and a read aloud resulted in classification 

accuracy rates that were either similar to or greater than the rates identified by individual predictors.  

In another study of reading CBM as universal screening tools, Graney, Martinez, Missall, and Aricak 

(2010) compared the technical adequacy of read aloud and Maze as universal reading screeners in fourth- and fifth-

graders. Results indicated that both read aloud and Maze demonstrated adequate test-retest and alternate-forms 

reliability in this sample. In particular, the authors found that read aloud demonstrated a mean short-term (i.e., 2-

week) test-retest reliability of .96, while alternate-forms reliability was .91. For Maze, mean short-term test-retest 

reliability was .89. Based on recommendations from Salvia, Ysseldyke, and Bolt (2007), both read aloud and Maze 

demonstrate appropriate reliability for use as universal screening procedures in fourth- and fifth-grade students. 

Furthermore, Graney et al. (2010) found moderate to strong correlations between reading CBM measures and 

reading criterion measures in their study. The authors note that correlations varied significantly depending on the 
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criterion measure, indicating that predictive utility of reading CBM tools depends on the content and construction of 

various outcome measures.  

Ardoin and colleagues (2004) investigated the incremental benefits of administering additional CBM 

measures beyond a single read aloud probe. In particular, they evaluated whether a) administering three versus one 

read aloud probes and b) administering a single Maze probe in addition to read aloud contributed to the prediction of 

student performance on a standardized achievement test.  The authors found that, in their sample of 77 third grade 

students, a single read aloud probe was a better predictor of both total reading achievement (r = .70) and reading 

comprehension skills (r = .42) compared to Maze (r = .50 for reading achievement and r = .31 for reading 

comprehension). Further, adding Maze to a read aloud measure during universal screening did not explain 

significant unique variance in broad reading scores.  These results contradict those found Decker et al. (2014) and 

suggested by Jenkins et al. (2007). 

The existing literature on the use of reading CBM measures as universal screeners is promising, but unclear 

as to which specific measure to use and for whom. Collective results from the studies above would suggest that 

multiple-measure universal screening batteries that include both read aloud and Maze are more appropriate for use 

in upper elementary and middle school grades; however, this may be due to fewer studies using Maze for screening 

purposes in lower elementary grades, as read aloud is a more common screening tool for these grades. 

Specific strategies to use reading CBM to predict comprehension. Munger and Blachman (2013) 

examined how well a battery of DIBELS Next (Good & Kaminski, 2011) measures and a vocabulary measure 

administered in first grade predicted reading comprehension scores in third grade. Specifically, they used DIBELS 

Next early literacy measures (phoneme segmentation fluency, nonsense word fluency, letter naming fluency, word 

use fluency, and oral reading fluency) and a standardized measure of receptive vocabulary. They found that first 

grade performance on oral reading fluency and the vocabulary measure shared the strongest relationships with third 

grade comprehension scores on a standardized test (r = .66 and r = .72, respectively) and explained the most 

variance in scores. The authors concluded that DORF is a strong predictor of reading comprehension and should 

continue to be used in screening efforts; however, it does not reliably measure oral language skills such as listening 

comprehension. As such, supplemental measures are needed in order to effectively predict comprehension 

outcomes. 
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In an effort to address concerns about the lack of face validity of read aloud as a measure of reading 

comprehension, one study attempted to identify new measures for assessing comprehension efficiently and 

effectively.  

Marcotte and Hintze (2009) compared four methods for assessing and predicting reading comprehension in 

fourth grade students: Maze, retell fluency (RTF), written retell, and sentence verification technique. Maze and retell 

fluency methods are described above. The written retell method consisted of students being administered a 750-

word passage, which they read silently for 5 minutes. After 5 minutes of reading, the students were given 5 minutes 

to write as much as they could remember from the story. A written retell score was calculated by counting the 

number of unique content words (i.e., distinct nouns, verbs, adjectives, and adverbs). Words synonymous with those 

contained in the passage were counted as correct. In the sentence verification technique, students were given a 

testing packet that contained four passages, each followed by 16 test sentences. During administration, students were 

instructed to read each passage and then answer the 16 test items by indicating whether a test sentence had the same 

meaning as a sentence in the story (“yes”) or meant something different (“no”). Students were given 30 minutes to 

complete their packet.  

According to the authors, the purpose of this comparison was to assess the incremental and predictive 

utility of each method in combination with read aloud.  Results indicated that Maze, written retell, and sentence 

verification techniques were all significant predictors of reading achievement in combination with read aloud.  The 

addition of these measures helped explain an additional 3-8% of observed variance in achievement scores. Overall, 

the combination of read aloud and Maze explained 70% of observed variability in the criterion measure of reading 

proficiency. Only retell fluency failed to contribute in explaining achievement above and beyond other measures. 

Based on these results, the use of multiple types of CBM measures may be warranted for screening and progress 

monitoring. Overall, this study suggests that while alternative methods show promise in predicting comprehension, 

they do not have standardized methods of administration and typically require more effort by developers and 

administrators (Bellinger & DiPerna, 2011). 

 Another study by Wise et al. (2010) investigated the relationships between different types of oral reading 

fluency measures and reading comprehension in at-risk second graders. They compared student performance on 

three different methods: a narrative passage similar to a read aloud measure, nonsense word fluency, and “real-

world” oral reading fluency, which included students reading from a word list. Surprisingly, they found that the real-
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word oral reading fluency measure was the most strongly related to a comprehension outcome measure. The authors 

suggest that the real-word method is an efficient way to screen for future comprehension difficulties. Indeed, these 

findings agree with those from the Kim et al. (2011) study described above, in which list-reading fluency was a 

better predictor of comprehension for average versus skilled readers. In sum, it would seem that early identification 

efforts should involve screening for multiple skills related to comprehension in an efficient, reliable way. 

Stage 2 evidence of reading CBM measures as progress monitoring tools. While the evidence base for 

read aloud and Maze CBM measures supports their use as screening tools, less is known about the utility of these 

measures as progress monitoring tools (Wayman et al., 2007). In their review, Busch and Reschly (2007) reported 

that CBM measures of reading, including Maze and read aloud, are appropriate for use as progress monitoring tools 

in an RTI framework. At Tier 1, CBM measures allow schools to monitor students identified as “at-risk” for reading 

problems as identified by universal screening (Deno et al., 2009). At Tier 2, progress monitoring of students 

receiving evidence-based intervention provides objective data that can be used to inform whether instructional 

changes are necessary and to help determine an individual student’s response to an intervention. Despite the logical 

fit between CBM and RTI, empirical evidence regarding the use of read aloud and Maze specifically as progress 

monitoring tools is lacking and results are mixed (Shapiro, 2013; Wayman et al., 2007). Emerging research on CBM 

reading measures as progress monitoring tools has begun to question previous recommendations about the process 

and content of progress monitoring (Shapiro, 2013).  

Indeed, Ball and Christ (2012) caution that general outcome measures such as CBM are necessary, but not 

sufficient, for evaluating progress within an RTI model. They suggest that CBM be used in combination with 

specific subskill mastery measurement (discussed previously), which includes more targeted assessment of 

particular skills. Further, they recommend that CBM measures have more utility in evaluating generalized, long-

term effects of an intervention whereas specific subskill mastery measurement is better suited for evaluating the 

short-term effects of an intervention.  

Olinghouse, Lambert, and Compton (2006) demonstrated use of a specific subskill mastery measurement 

tool to monitor progress. In their study, they created an intervention-aligned word list and compared it to a read 

aloud measure in its utility in measuring student progress during a reading intervention. They found that the 

intervention-aligned word list accounted for unique variance on measures of timed and untimed word reading, 

decoding, and timed passage accuracy. The read aloud measure accounted for unique variance on a measure of 
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reading fluency. The authors suggest that, when choosing a progress monitoring tool, it is important that the tool be 

highly aligned to student skill level, the skill targeted for remediation, and the goals of the intervention.   

Read aloud as a progress monitoring tool. Ardoin and colleagues (2013) conducted a review of the 

research on the use of read aloud measures for progress monitoring. Their review included a summary of factors that 

influence decision-making, including how many data points are obtained and methods for determining student 

progress. The authors reviewed 171 journal articles, book chapters, and instructional manuals related to progress 

monitoring with read aloud. Results indicate an overwhelming amount of variability in the literature. Studies 

recommend anywhere between 3-20 data points prior to making a decision based on progress monitoring data, with 

the modal recommendation being 7 data points. Regarding methods for determining student progress, the review 

found that an ordinary least squares (OLS) regression approach was the most commonly recommended procedure 

for determining progress. Overall, though, the results of this review indicate significant inconsistencies regarding the 

use of read aloud to monitor student progress, both in research and in practice. In fact, the authors go so far as to 

state that, “CBM-R progress monitoring is not an evidence-based practice for modeling growth of individual 

students’ gains in reading” (p. 12).  

Goffreda and DiPerna (2010) came to a similar conclusion when they reviewed 26 studies to arrive at a 

synthesis on the psychometric evidence for DIBELS measures. They found that DIBELS read aloud measures 

generally exhibit good technical adequacy; however, relative to evidence for these measures as a screening tool, 

research is less abundant on their use as a progress monitoring tool. 

In sum, these findings calling the use of read aloud as a progress monitoring tool into question are 

somewhat paradoxical, given that evaluation of student progress was a primary impetus behind the development of 

CBM (Ardoin et al. 2013; Deno, 1985). Additional research regarding the measures and methods by which we 

measure reading progress are warranted. 

Maze as a progress monitoring tool. Unlike read aloud, no research synthesis on Maze for progress 

monitoring is currently available. However, several studies exist that offer similar conclusions about its utility for 

this purpose. Fuchs and Fuchs (1992) conducted one of the first studies comparing alternative methods of reading 

CBM for measuring elementary students’ growth in reading comprehension. The purpose of this study was to 

examine the validity, utility, and acceptability of four measures: question answering tests, recall procedures, cloze 

techniques, and maze procedures. These measures were proposed as alternatives to read aloud that could possibly 
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address some of the disadvantages of using a read aloud measure; namely, the time-consuming necessity of 

individual administration and the perception of read aloud as simply a measure of fluency and lacking face validity 

as a measure of reading comprehension. This multi-year study on progress monitoring revealed Maze as the most 

promising reading CBM measure of the four types examined. Namely, Maze was the best at detecting student 

growth over time and resulted in the smallest measurement error. It should be noted that Fuchs and Fuchs (1992) did 

not find recall measures, similar to RTF, to be reliable detectors of growth. 

In recent years, much of the research regarding the use of Maze as a progress monitoring tool has been 

conducted with middle school students (Espin, Wallace, Lembke, Campbell, & Long, 2010; Ticha, Espin, & 

Wayman, 2009; Tolar, Barth, Fletcher, Francis, & Vaughn, 2014).  Espin et al. (2010) analyzed growth curves for 

31 eighth-grade students whose progress was monitored using read aloud and Maze. Their results found that Maze 

reflected growth over time, with students increasing their scores by an average of 2.88 selections per week. In 

contrast, read aloud measures did not indicate significant growth over time. Ticha et al. (2009) replicated the Espin 

et al. (2010) study. They administered read aloud and maze passages to a sample of 35 eighth-graders weekly for 10 

weeks, then examined how well student growth on each measure predicted performance on reading criterion 

measures. Similar to Espin et al.’s (2010) findings, results from Ticha et al (2009) showed that Maze reflected 

significant growth over time and was also significantly related to reading criterion measures. Read aloud measures 

predicted performance on criterion measures but did not reflect significant growth.  

Tolar et al. (2014) compared the utility of static measurement versus slope in predicting student outcomes 

on a reading criterion measure. Similar to other studies, the sample in this study included middle school students. 

Results indicate low slope reliability across reading CBM measures. Further, the only situation in which slope added 

to the prediction of reading outcomes was when the reading CBM measure was highly aligned to the outcome. 

These findings concur with those of Olinghouse et al. (2006), who found that measures that are highly aligned to 

intervention could account for unique variance in specific skill outcomes. 

A study by Shin, Deno, and Espin (2000) examined the technical adequacy (i.e., reliability, sensitivity, and 

validity) of the Maze task for measuring reading growth in second graders. They administered computer-based Maze 

tasks once per month over the course of a school year to a sample of 43 students. Alternate-forms reliability results 

found a mean correlation of r = .81, with a range of reliability from .69 to .91. Sensitivity was assessed using 

hierarchical linear modeling (HLM, discussed later in detail). Results showed a significant mean growth rate, 
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indicating a reliable increase in Maze scores. Validity analyses showed a significant positive relationship between 

Maze growth and reading scores on a state standards assessment. Further, the authors did not find statistically 

significant differences in mean growth rates between general education students and those receiving remedial 

education.  

Taken together, these findings suggest that Maze is a sensitive predictor of growth in middle school 

students and second grade students. Given the diversity of samples in these studies, it is reasonable to expect that 

Maze would be sensitive to monitoring progress in other grade levels, as well.  

Form Effects and Passage Equivalence in Reading CBM 

Passage equivalence is an ongoing concern regarding the use of CBM for progress monitoring purposes 

(Deno, Fuchs, Marston, & Shin, 2001). Hintze and Christ (2004) found that CBM passages controlled for difficulty 

(i.e., equivalent passages or forms) significantly reduced measurement error compared to uncontrolled passages, 

resulting in increased sensitivity and reliability.  

The most common method for establishing passage equivalence in CBM measures is through the use of a 

readability formula. Readability formulas were designed to give a basic indication of reading difficulty. These 

formulas take into account different aspects of written text that theoretically make it more or less difficulty to read, 

such as vocabulary and sentence complexity (Begeny & Greene, 2014). As discussed above, reading is a complex 

construct which involves the confluence of many different skills. Given that readability formulas seem to take many 

of these skills into account, it has been suggested that they may be a better indicator of comprehension difficulty 

rather than fluency difficulty (Christ & Ardoin, 2009). If this holds, then the readability formulas used to develop 

read aloud passage sets may not be the most appropriate form of establishing passage equivalence. Some researchers 

have empirically investigated this question with interesting results. 

Ardoin, Suldo, Witt, Aldrich, and McDonald (2005) compared the validity of eight different readability 

formulas in predicting student performance on read aloud. The authors found a modest relationship between reading 

fluency and read aloud passage difficulty as determined by reading formulas. Interestingly, the readability formulas 

most commonly used to categorize read aloud probes were the poorest predictors of reading fluency. Based on these 

results, the authors conclude that readability formulas are inadequate for establishing passage equivalence and may 

reflect inaccurate estimates of student progress.  
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Betts, Pickart, and Heistad (2009) investigated the equivalence of first-grade read aloud passages and found 

that, while readability formulas may be helpful for differentiating reading passages between grade levels, they are 

not sensitive enough to establish passage equivalence within a grade level. These results indicate that read aloud 

passages within grade levels have different levels of difficulty, which could be problematic when they are used as 

progress monitoring tools. 

Poncy, Skinner, and Axtell (2005) administered third-grade level DIBELS (Good & Kaminski, 2002) read 

aloud probes to a sample of 37 students. Each student was administered 20 passages in a random order over the 

course of one school week. While passages had been equated on readability formulas during their development, 

Poncy and colleagues investigated whether there was still significant variability among passages. They found that, in 

these passages, 81% of variation in scores was attributed to person, while 10% of variation in scores was due to 

differences in passage. Through use of generalizability and decision studies, the authors found that if they altered 

passages to within 10 WCPM of the mean fluency score across passages, they could attribute 89% of variation in 

scores to person and reduce variation in scores due to passage to 2%. These results support the field-testing of 

reading CBM passages before use in progress monitoring, and the authors suggest that when identifying passage sets 

for this purpose, all measures should fall within 5 WCPM of the mean score for the set in order to reduce 

measurement error. This study marked an important effort in identifying ways to establish passage equivalence. 

They showed that field-testing passages and comparing mean performance rates was helpful for reducing 

measurement error. Others have attempted to identify additional strategies to achieve passage equivalence in read 

aloud measures. 

Christ and Ardoin (2009) compared four methods of passage equivalence: random sampling, a readability 

formula, performance means, and Euclidean Distance. Like Poncy et al.’s (2005) method, the performance means 

and Euclidean Distance strategies relied on field-testing a set of existing read aloud passages. Euclidian Distance is a 

method of calculating the square root of the sum of squared differences between repeated measurements. By using 

this method, the authors were able to form distinct clusters of similar and dissimilar passages in order to reduce 

passage variability. Their results indicated that equivalence efforts that used field-testing (i.e., performance means 

and Euclidean Distance) resulted in the least measurement error compared to random selection and a readability 

formula. During read aloud field-testing with second- and third-graders, Christ and Ardoin (2009) found an average 
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difference of 46 WCPM between the easiest most difficult passages. As such, they concluded that student 

performance is dependent on the individual characteristics of passages. 

Ardoin and Christ (2009) compared the standard errors associated with various read aloud passage sets, 

including DIBELS 6th Edition (Good & Kaminski, 2002), AIMSweb (Howe & Shinn, 2002), and an experimental 

passage set designed by the authors (i.e., Formative Assessment Instrumentation and Procedures for Reading; FAIP-

R). DIBELS and AIMSweb passages were taken from the third-grade progress monitoring passages available from 

the publishers. The FAIP-R passage set was taken from a collection of passages the authors devised as part of 

previous study on passage equivalence (Christ & Ardoin, 2009, described above). Ardoin and Christ (2009) found 

that FAIP-R passages had the smallest magnitude of measurement error, including standard error of the slope and 

standard error of the estimate. AIMSweb passages had higher error rates than FAIP-R, but lower error rates than 

DIBELS passages. Again, the authors of this study concluded that equating read aloud passages through field-testing 

methods can help reduce measurement error. Further, they recommend that when schools use read aloud passages 

for progress monitoring, it is important to consider the amount of error inherent in growth measurement due to 

variability in passage difficulty.   

While studies like those described above have shown that field-testing helps reduce measurement in read 

aloud scores, it may not always be sufficient to establish passage equivalence. During the development of their latest 

reading passage set (i.e., DIBELS Next; Good & Kaminski, 2011), the authors conducted field-testing in an effort to 

reduce passage variability. Cummings, Park, and Bauer-Schaper (2013) found significant form effects among 

DIBELS Next oral reading fluency probes, indicating that even after field-testing, passage equivalence had not been 

reliably established in these measures.  

Given the concerns with form effects and passage equivalency stated above, it is evident that efforts to 

improve reading CBM are necessary if they continue to be used as progress monitoring tools within an RTI context. 

Assessing Growth and Predicting Outcomes with CBM 

Some (Deno et al., 2001; Fuchs & Fuchs, 1993) have attempted to identify average growth rates on CBM 

measures. While growth rates may be helpful as general indicators of expected progress, Deno et al. (2001) note that 

calculation of growth rates is highly dependent on several factors such as sample characteristics and CBM passage 

difficulty. They indicate that until passage equivalency can be established for CBM passages, growth rates should be 

used with caution.  
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The evaluation of progress monitoring necessitates the use of statistical techniques that are sensitive to 

growth, such as multilevel models or latent growth curve modeling (Hoffman, 2015). For purposes of this study, 

only multilevel models are described further. Multilevel models are also known as general linear mixed models or 

hierarchical linear models (HLM, Bryk & Raudenbush, 2003; Raudenbush & Bryk, 2002). Given that HLM was 

used in the current study, this descriptor will be used from here on to describe both the framework and statistical 

package used to carry out analyses.  

As suggested in its name, hierarchical linear models are those that take the hierarchical structure of data 

into consideration (Field, 2009; Woltman, Feldstain, MacKay, & Rocchi, 2012). Hierarchical structures involve 

different levels of grouped or “nested” data. These structures are a common occurrence, particularly in education 

(i.e., students nested within classrooms nested within schools nested within districts, etc., Woltman et al., 2012). In 

longitudinal studies, repeated observations across time are viewed as being nested within individual participants 

(Raudenbush & Bryk, 2002). These models are also useful for assessing student growth because they can account 

for autocorrelation, or the co-variation of data that results from assessing the same participant over time. In other 

words, HLM techniques are not restricted by the assumption of independent data (Field, 2009). Another advantage 

of HLM is its ability to handle missing data. 

Previous research has demonstrated that HLM is an appropriate method for analyzing students’ academic 

growth within an RTI framework (Hampton, Lembke, Lee, Pappas, Chiong, & Ginsburg, 2012; Shin, Espin, Deno, 

& McConnell, 2004; Silberglitt & Hintze; 2007; Tichá et al., 2009). Unlike the use of average growth rates, HLM 

allows the user to model individual growth rates for students, which helps give a more accurate picture of individual 

progress.  

Current Study 

Given the advantages of field-testing and using mean performance rates for establishing passage 

equivalence and reducing measurement error in CBM, these strategies were used to create two equivalent passage 

sets: one AIMSweb Maze (R-Maze; Howe & Shinn, 2002) and one DIBELS Next oral reading fluency/retell 

(DORF/RTF; Good & Kaminski, 2011). Moreover, these new passage sets were used to monitor reading progress in 

a sample of second-grade students over the course of approximately 8 weeks. Finally, students were administered a 

standardized reading comprehension measure at the end of the study. These strategies were used to answer two main 

research questions:  
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1. After equating passages, which CBM probe type (i.e., R-Maze, DORF, or RTF) is the most 

sensitive to reading growth in second graders over eight weeks? Additionally, does growth differ 

depending on certain student characteristics (i.e., free/reduced lunch status or special education 

services)? 

2. Which CBM probe type (i.e., R-Maze, DORF, or RTF) is the best predictor of reading 

comprehension?  

Despite limited and mixed evidence regarding the use of RTF measures for progress monitoring and 

predictive purposes, they were included in the study based on their purported use as an indicator of reading 

comprehension, as well as their having a similar construction one particular subset of the reading comprehension 

outcome measure used in the current study (i.e, Reading Recall subtest of the Woodcock-Johnson IV (McGrew, 

LaForte, & Schrank, 2014)).  

In order to answer research question one, HLM will be used to evaluate student growth on each different 

CBM probe type. While studies show that read aloud measures are sensitive to growth between benchmarks, less 

evidence is available regarding their sensitivity to short-term growth. Also, given that Shin et al. (2000) 

demonstrated that Maze measures are sensitive to reading growth in second graders, it was hypothesized that 

AIMSweb R-Maze would be most sensitive to changes in participants’ reading scores over the course of the 8-week 

study. Based on mixed results regarding the utility of RTF as a progress monitoring tool, these measures were not 

expected to show sensitivity to growth. Further, it was hypothesized that students receiving special education 

services would show slower growth than peers who do not receive special education services. This hypothesis is 

based on findings from Christ et al. (2010) and Shin et al. (2000) who found differences in growth based on SPED 

status. Finally, it was hypothesized that growth rates for students who were eligible for free/reduced lunch would 

show different growth rates than students who were not, as previous research has shown that student socioeconomic 

status is related to student achievement (Raudenbush & Bryk, 2002).  

Regarding the second research question, it was hypothesized that DORF measures would be the strongest 

predictor of reading comprehension. This hypothesis is the result of a review of a literature base which shows that, 

for students in lower elementary grades, read aloud measures have been the strongest predictors of overall reading 

achievement.  
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METHOD 

Institutional Review Board approval was obtained prior to participant recruitment and data collection. After 

gaining school administrator and teacher permission, consent forms were sent home to parents of eligible 

participants. In Phase One, all second grade students were eligible to participate. In Phase Two, teachers sent parent 

consent forms home to all students whose mid-year reading scores were at or below benchmark for second grade. 

Because the schools in the study screened students using DIBELS (Good & Kaminski, 2002; 2011), “benchmark” 

refers to a WCPM score of 71 or below. Scores in this range place a student at higher risk for reading difficulties and 

indicate a need for supports.  

For each phase, students whose parents consented to their participation were given a brief written and 

verbal explanation of the study and given the choice to participate. There were no students who declined to 

participate in Phase One, and there were four students in Phase Two who declined to participate following 

explanation of the study.  

Participants  

Participants for Phase One included 75 second-grade students recruited from four public elementary 

schools in a central Nebraska school district. The sample was comprised of 36 males (48%) and 39 females (52%). 

There were 62 Caucasian students (82.7%), nine Hispanic students (12%), three African-American students (4%) 

and one Asian student (1.3%) in this phase.  

In Phase Two, a total of 32 second-grade students participated. These students were recruited from the 

same four schools in the same district in central Nebraska. In this phase, there were 19 males (59.4%) and 13 

females (40.6%). Furthermore, there were 26 Caucasian students (81.3%), five Hispanic students (15.6%) and one 

Asian student (3.1%). A total of 15 students (46.9%) in this phase of the study were eligible for free or reduced 

lunch, while a total of 12 students (37.5%) received some type of special education services.  

Measures 

Maze. The AIMSweb Reading Maze (R-Maze) passage set for second grade includes a total of 30 

passages: three benchmark passages and 27 passages for progress monitoring. The 27 R-Maze progress monitoring 

passages are the same stories as those used in administration of the AIMSweb read aloud measure (R-CBM). During 

AIMSweb passage development, an original pool of 50 probes was field-tested with elementary students and 

passages were evaluated based on difficulty, alternate-form reliability, and readability. Passages more than one 
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standard error of measurement above or below the overall mean difficulty (based on number of words read 

correctly), passages whose readability was outside of the intended grade range, and passages whose alternate-form 

reliability was less than .70 were eliminated from the pool. Passage length ranges from 150-400 words.  

Developers modified each R-CBM passage for use as a Maze task using a procedure described by Fuchs 

and Fuchs (1992). The first sentence of each passage remains intact. Starting with the second sentence, every 

seventh word has been replaced by a bracketed set of three words. One of these three words is the word from the 

original passage (i.e., the correct choice), and the other two are distracter words. One distracter word is a word from 

the passage that is of the same part of speech but does not make sense or preserve meaning, while the second 

distracter is a word from the passage that is of a different part of speech and does not make sense in context (Howe 

& Shinn, 2002). Based on data from a standardization sample, the alternate-form reliability of R-Maze passages 

ranges from .68 - .78. Alternate-form reliability for the R-Maze passage set is .74.   

Standard administration of the R-Maze involves students being given a standard set of instructions 

regarding the task, and, if appropriate, a practice task. Following these instructions, students are asked to read a 

passage silently and circle the correct word each time they come to a bracketed set of three words. Students have 

three minutes to complete the task. Because students read silently and indicate their answers by circling words, the 

R-Maze task can be administered in a large group, small group, or individual format. R-Maze scores are calculated 

by counting the total number of correct responses on each passage. Students who happen to complete the R-Maze 

task in less than three minutes have their score prorated based on a formula developed by test developers (Howe & 

Shinn, 2002).  

Read aloud and retell. The Dynamic Indicators of Basic Early Literacy Skills Next (DIBELS Next; Good 

& Kaminski, 2011) Oral Reading Fluency (DORF) task is a standard read aloud measure, while DIBELS Retell 

Fluency (RTF) is a word recall task. DIBELS Next passages differ from earlier editions of DIBELS passage sets in 

that they have been field-tested with elementary students and have been equated empirically. Another new feature of 

DIBELS Next involves the combination DORF and retell tasks into a single administration with the goal of 

obtaining a more comprehensive measure of reading ability. The technical manual of the DIBELS Next indicates 

that DORF has multiple-probe alternate-form reliability of .96 and test-retest reliability of .91 in second-grade 

students. For RTF, multiple-probe alternate-form reliability was .68 and test-retest reliability was .27 and non-
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significant. Measures of criterion validity for DORF and RTF with a standardized reading outcome measure were 

.69 and .53, respectively.  

Standard administration of DORF/RTF takes place in an individual format. Students are given a standard 

set of instructions and then asked to read a written passage aloud to the examiner. Once the student begins reading 

aloud, the examiner begins timing for one minute. As the student reads, the examiner marks mispronunciations, 

omissions, and any other errors on their copy of the story. At the end of one minute, the examiner tells the student to 

stop reading. Immediately after the student stops reading for DORF, the examiner prompts the student to recall as 

much as they can from the story he/she just read (i.e., retell). Once the student begins retelling the story, the 

administrator starts timing for one minute and begins marking the number of words a student recalls that are relevant 

to the story. Scoring for the DORF task involves calculating the total number of words a student read, then 

subtracting the number of errors to arrive at the number of words the student read correctly in one minute (WRCM).  

Scoring for the RTF task involves counting the total number of words the student recalled that were relevant to the 

story. 

Reading comprehension. The Woodcock-Johnson IV Tests of Achievement (WJ-IV; McGrew, LaForte, 

& Schrank, 2014) Reading Comprehension - Extended cluster consists of three subtests: Passage Comprehension, 

Reading Recall, and Reading Vocabulary. The Passage Comprehension subtest involves students reading a sentence 

or short passage and identifying a missing word that make sense in context. This subtest has a median reliability of r 

= .89. The Reading Recall subtest requires students to read a story silently and then recall as much of the story as 

possible. Median reliability of the Reading Recall subtest is r = .92. For the Reading Vocabulary subtest, students 

read target words aloud and provide a synonym or antonym as appropriate. This subtest has a median reliability of r 

= .88. (McGrew et al., 2014). The Reading Comprehension cluster has a median reliability of r = .96. Unlike CBM 

measures, subtests from the WJ-IV are untimed, although students may be prompted for a response following a 

period of silence. An online scoring package is available from the publishers, and provides a report that includes 

scaled scores, age equivalents, and grade equivalents.  

Procedural Integrity and Interobserver Agreement  

Because CBM is a standardized procedure, it is important that passages are administered with integrity. 

During Phase One, 27.4% of Maze administrations and 27.1% of DORF/RTF administrations were monitored for 

procedural integrity. During Phase Two, 26.2% of Maze administrations and 30.4% of DORF/RTF administrations 
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were monitored for procedural integrity. Procedural integrity by phase and probe type is found in Table 1. For all 

probe types, integrity was assessed using the administration checklist provided by test developers (See Appendices 

D, E, and F).  

Table 1. Procedural Integrity by Phase and Probe Type 
 
 Phase One  Phase Two 

Probe Type Average Minimum Maximum  Average Minimum Maximum 
R-Maze 98.2% 83.3% 100%  96.5% 83.3% 100% 
DORF 98.8% 83.3% 100%  98.7% 83.3% 100% 
RTF 95.4% 66.7% 100%  96.1% 83.3% 100% 

To ensure scoring accuracy, a random sample of 25.9% of Maze administrations and 27.1% of DORF/RTF 

were re-scored by a separate rater during Phase One. In Phase Two, 36.7% of Maze probes and 30.4% of 

DORF/RTF probes were re-scored for accuracy. For R-Maze, the second rater re-scored paper copies of individual 

passages. For DORF/RTF, the second rater listened to recorded administrations of the passage once and re-score the 

paper copy. Given concerns in the literature regarding low reliability on scoring of retell measures (Bellinger & 

DiPerna, 2011), audio recordings helped enable a method of correcting for examiner errors in administration. If 

interobserver agreement (IOA) scores were below 80%, the score recorded by the primary rater (i.e., the author or a 

graduate assistant) was used for data analysis purposes. For WJ-IV subtests, 25% of administrations were recorded 

and re-scored for accuracy. Average IOA for subtests was 97.8% and ranged from 91.2% to 100%. For all measures, 

IOA was calculated using the following formula: Agreement = (Number of agreements/Number of agreements + 

Disagreements) *100. Additional results of IOA for each phase may be found in Table 2. 

Table 2. Interobserver Agreement by Phase and Probe Type 
 
 Phase One  Phase Two 

Probe Type Average Minimum Maximum  Average Minimum Maximum 
R-Maze 98.4% 94.1% 100%  99.2% 98.2% 100% 
DORF 99.2% 92.4% 100%  98.8% 89.1% 100% 
RTF 91.3% 52.6% 100%  89.1% 33.3% 100% 
 
Procedure 

Training. Graduate and undergraduate psychology majors assisted with data collection. All research 

assistants participated in a 3-hour training session prior to collecting data for the study. The training session was 

conducted by the author, and included an overview of reading CBM, including a brief history and its uses. Next, 

DIBELS DORF/RTF and AIMSweb R-Maze tasks were introduced, including specific administration and scoring 

rules for each.  Research assistants then practiced scoring CBM probes using DIBELS training videos and 
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AIMSweb sample probes. During training, research assistants also practiced administering DORF/RTF and R-Maze 

tasks to the author using the scripts provided by the publishers. The author scored procedural integrity using 

checklists provided by the publishers (See Appendices D-F). After research assistants demonstrated at least 90% 

scoring and administration accuracy on training materials, they observed in vivo administrations of the measures and 

scored during live administrations. Once they demonstrated 90% scoring accuracy on three consecutive live 

administrations for each probe type, they were allowed to aid in data collection. Each research assistant received a 

training packet that included copies of administration scripts for each task, as well as an overview of scoring 

procedures. Research assistants were asked to use this packet a reference during data collection to increase 

procedural integrity, although extra copies were always available from the researcher.  

Phase one: Identification of equivalent passage sets. R-Maze probes were selected from the pool of 27 

AIMSweb (Howe & Shinn, 2002) progress monitoring passages described above, which were available for 

download from the AIMSweb website. Similarly, DORF/RTF passages were selected from a pool of 20 DIBELS 

Next (Good & Kaminski, 2011) progress monitoring passages available for download from the DIBELS website. 

Administration and scoring procedures were conducted according to the standardized instructions suggested by each 

respective publisher as described above. Students across the four participating schools were administered R-Maze 

and DORF/RTF passages in a random order until at least 25 passages from each pool were administered, or until the 

duration allowed for Phase One expired. At the end of Phase One, each student had completed an average of 9.0 R-

Maze probes and an average of 7.4 DORF/RTF probes. R-Maze administration typically occurred in small-group 

formats (i.e., 3-5 students). DORF/RTF administration always occurred in an individual format, and administrations 

were voice-recorded for IOA scoring and treatment integrity purposes. The setting for passage administration varied 

across schools. Probes were administered at small tables and desks in the hallway in two schools, in the library at 

one school, and in an empty classroom at the fourth school.  

A total of 14 probes administered during this phase (9 R-Maze; 5 DORF/RTF) were excluded from data 

analysis due to spoiled administrations. Spoiled administrations were defined as any occurrence that affected 

administration or scoring such that a) a valid score could not be obtained or b) the score obtained was likely to be 

inaccurate. Situations in which student effort or motivation resulted in a low score were not judged as spoiled 

administrations unless the student refused to participate or purposefully made errors. Spoiled administrations during 

this phase were typically the result of examiner error, such as failing to start timing appropriately. Spoiled 
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administrations were also the result of major interruptions or distractions (e.g., fire or tornado drills; announcements 

over the loudspeaker). In the event of a spoiled administration, the student was administered an alternate probe.  

Phase two: Progress monitoring. Second-grade students who scored below the reading benchmark during 

winter universal screenings (i.e., 71 WCPM or lower) but were still capable of reading a second grade-level passage 

were recruited for phase two of the study. Teachers at participating schools were asked to identify these students and 

distribute parental consent forms to potential participants’ parents. Following recruitment and parental consent, 33 

students agreed to participate in this phase of the study.  One student moved out-of-state during the study, bringing 

the final sample size for this phase to 32 students.  

Each student in this phase was administered one R-Maze passage and one DORF/RTF passage per week 

for 8 weeks or until 8 occasions of data were collected. Data collection typically occurred once per week; however, 

due to various schedule conflicts (i.e, student absences, school holidays, field trips, assemblies, etc.) data collection 

occurred twice per week (Tuesday and Friday) for three students. R-Maze administration typically occurred in 

small-group formats (i.e., 3-5 students). DORF/RTF administration always occurred in an individual format, and 

administrations were voice-recorded for IOA scoring and treatment integrity purposes. Administration order of 

passages was randomized and balanced across students and schools to help account for order effects and additional 

form effects not accounted for by passage equivalency efforts. A random number generator function was used to 

devise the administration order of probes, which was balanced across schools. Following completion of progress 

monitoring data collection, each participant was administered the Reading Comprehension – Extended cluster of the 

WJ-IV. Individual administrations of WJ-IV subtests were also voice-recorded and reviewed by a second rater for 

IOA purposes. Settings of probe and outcome measure administration were identical to those in Phase One. 

There were a total of four spoiled administrations during this phase of the study: one for R-Maze (which 

resulted in three spoiled participant probes, as there were three students in the group) and three for DORF/RTF. The 

spoiled Maze administration occurred when the administrator failed to start her timer at the beginning of probe 

administration. The spoiled DORF/RTF administrations were also the result of examiner error, including failing to 

administer the RTF task following DORF administration and inaccurate timing procedures. In all four cases, 

students were administered alternate probes following the spoiled administration. 
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Data Analyses 

Phase one: Identification of equivalent passage sets. Data gathered during Phase One were entered into a 

data file in SPSS (IBM Corp., 2015) in order to facilitate calculation of descriptive statistics which resulted in rank-

ordering and identification of new passage sets. A mean score (i.e., number of correct selections for R-Maze, words 

read correctly per minute for DORF, and number of content words recalled for RTF) was calculated for each 

passage in the pool, followed by calculation of a grand mean for each probe type. Mean scores for each passage 

were rank-ordered around the grand mean for R-Maze and DORF. Although mean scores were calculated for RTF, 

these passages were ranked around the average WCPM scores rather than the number of relevant words recalled 

during the RTF task. Given that DORF has been shown to be a more reliable measure and stronger predictor of 

reading performance, it was decided that a passage set formed around WCPM rather than RTF would be appropriate. 

The five passages whose means were immediately above and below the grand mean of each probe type were 

considered for inclusion in the next phase. For DORF, the WCPM ranges of these 10 passages were calculated and 

adjustments were made as needed such that the mean WCPM for all passages in the new set were within 5 WCPM 

of the grand mean for DORF.  

Although Phase Two only included eight occasions of data collection, 10 passages for both DORF/RTF and 

R-Maze were selected for use in Phase Two. The two extra passages identified served as alternate passages to be 

used in the event of a spoiled administration, as described above. 

Phase two: Progress monitoring. Probes administered during Phase Two were scored in the same way as 

those in Phase One with one exception: pro-rating formulas were not employed in situations where students finished 

the task in less than three minutes. Based on observations of student performance during live administrations during 

the R-Maze task, participants in this phase who finished in less than three minutes had a high likelihood of rushing 

through the task, which typically resulted in a high error rate (i.e., greater than 67%). As such, R-Maze probe scores 

in this phase consisted of a count of the total number of correct selections. This strategy was adopted given that pro-

rating would result in inflated and inaccurate scores for these participants. Although such administrations may have 

been considered a spoiled administration, it was decided that applying a post-hoc scoring correction would be more 

time-efficient than re-administering these probes, particularly since some students persisted in rushing through the 

task even after being reminded of the task instructions and emphasizing that students should work as quickly as the 

can without making mistakes. Potential implications of scoring corrections are addressed in the Discussion section. 
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Data file structuring. Data gathered during Phase Two were entered into data files in SPSS (IBM Corp., 

2015). In the file for growth models, data were structured hierarchically, such that each row of data included a single 

student’s CBM scores on a single occasion of data collection. In other words, the original level-1 data file included 

256 rows before removing outliers. Furthermore, data were sorted by their student identification number then by the 

occasion of data collection. The data file used for predicting comprehension included 32 rows of data, each of which 

included a single student’s comprehension score and their CBM scores for the three different probe types on the first 

occasion (i.e., their initial status score for each CBM measure). In this file, data were sorted first by their school 

identification number then by their student identification number.  

Assumptions. HLM holds the assumptions of normality and homogeneity of variance. After evaluating 

normality plots for CBM probe types, one clear outlier was observed in both R-Maze and DORF, while several 

outliers were identified for RTF. The outlier for R-Maze was a score in which the student completed the task in just 

over one minute and had an error rate of 50%. As such, it was determined that the score may not be a valid indicator 

of that student’s performance and was thus deleted. For DORF, the outlier score was also determined to be possibly 

invalid and was thus deleted. After removing these occasions of data, both normality and homogeneity assumptions 

were met for these variables. For RTF, tests for normality indicated kurtosis (>1). This violation also has the 

potential to result in significant tests for heterogeneity of variance (Raudenbush & Bryk, 2002). As such, three 

extreme scores were removed for RTF (the highest and two lowest). These deleted cases resulted in a total of 255 

occasions of R-Maze and DORF data and 253 occasions of RTF data for the final level-1 data set.  

Variable coding. Time (occasion, or OCC) was centered on the first measurement occasion by subtracting 

each measurement occasion by 1. This aided in model interpretation such that the intercept indicated a particular 

student’s score at the beginning of the study. Student eligibility for free or reduced lunch (FRL) and student special 

education status (SPED) were dummy coded such that “0” indicated a student who was not eligible for free or 

reduced lunch or did not receive special education services, while “1” indicated a student who was eligible for free 

or reduced lunch or did receive special education services. 

HLM model building. The statistical modeling software HLM 7 (Scientific Software International; 

Raudenbush et al., 2011) was used to evaluate all models. For all models used in analysis, parameters were 

estimated through restricted maximum likelihood (RML). This is the default likelihood setting for HLM, and 
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maximizes sample residuals. This method is appropriate for small sample sizes, as it reduces estimate bias compared 

to full maximum likelihood (Singer & Willett, 2003).  

Growth models. Given that the study involved eight occasions of data, it is possible that growth patterns 

would be better explained by a high-order polynomial (e.g., quadratic, cubic) rather than a linear model. To 

investigate this possibility, individual students’ progress data were graphed and assessed through visual inspection 

and likelihood-ratio tests on deviance statistics. Samples graphs depicting individual students’ progress by probe 

type, as well as aggregated mean CBM scores across occasions for each probe types may be found in Figures 1-6. 

While visual inspection initially suggested that a linear model would be most appropriate for each of the three probe 

types, a quadratic model was constructed for each probe type to test this empirically given that previous studies 

evaluating student progress with CBM measures have found evidence of a curvilinear relationship (i.e., a growth 

curve) and that quadratic models are more appropriate (e.g. Shin et al., 2004).  

 
Figure 1. Sample student graphs of R-Maze scores (MAZE) as a function of measurement occasion (OCC). 
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Figure 2. Aggregated average student R-Maze (Mean Maze) scores as a function of measurement occasion (Occ). 
 

 
Figure 3. Sample student graphs of DIBELS oral reading fluency scores (ORF) as a function of measurement 
occasion (OCC). 
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Figure 4. Aggregated average student DIBELS oral reading fluency (Mean ORF) scores as a function of 
measurement occasion (Occ). 
 

 
Figure 5. Sample student graphs of DIBELS retell fluency scores (RETELL) as a function of measurement occasion 
(OCC). 
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Figure 6. Aggregated average student DIBELS retell fluency (Mean Retell) scores as a function of measurement 
occasion (Occ). 
 

Three separate growth models were built in an effort to answer research question one, one for each CBM 

probe type. Each model included two levels, in which measurement occasions (i.e., time) at level-1 were nested 

within individual students at level-2. The contributions of student socioeconomic status, as indicated by eligibility 

for free or reduced lunch (FRL), and student special education status (SPED) were also evaluated by including these 

variables as predictors at level-2. While a 3-level model could also be used given that students in the study were 

nested within schools, the variables of interest (i.e., time, student FRL status and student SPED status) were at level-

1 and level-2. Furthermore, the small number of level-3 units (i.e., schools) limits interpretability of effects that 

would be found at this level. As such, 2-level models were used for evaluating student growth.  

A taxonomical approach was used in building all growth models, such that simpler models were 

constructed first and that subsequent, more complicated models were fit as indicated by empirical evidence and 

theory (Singer & Willett, 2003). This approach provides a baseline to which future models may be compared 

(Raudenbush & Bryk, 2002). Given these recommendations, the first built was an unconditional means model 

(Singer & Willett, 2003). The unconditional means model, also known as the null or empty model, does not include 

any predictors, only the outcome variable. This model is essentially a one-way analysis of variance, and it allows the 

user to test the null hypothesis that the mean initial status is not statistically different from zero. (Raudenbush & 

Bryk, 2002). The unconditional means model equations for each probe type may be found in Table 3.  
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Table 3. Taxonomy of multilevel models for change fitted to CBM data 
  
 

Level-1/Level-2 specification 
 
  

Model Level-1 Model Level-2 Model Composite Model 
A Yti = π0i + eti 

 

π0i = β00 + r0i 

 

Yti = β00 + r0i + eti 

 
B Yti = π0i + π1i(OCC)ti + eti 

 

π0i = β00 + r0i, 

π1i = β10 + r1i 

Yti = β00 + β10(OCC)ti + r0i + 

r1i(OCC)i + eti 

 
C Yti = π0i + π1i(OCC)ti + eti 

 

π0i = β00 + β01(FRL)i + β02(SPED)i + r0i, 

π1i = β10 + β11(FRL)i + β12(SPED)i + r1i 

Yti = β00 + β01(FRL)i + 

β02(SPED)i + β10(OCC)ti + 

β11(FRL)i(OCC)ti + 

β12(SPED)i(OCC)ti + r0i 

r1i(OCC)ti + eti 

Note: These models predict CBM scores as a function of time (OCC) at level 1 and free/reduced lunch status (FRL) 
and special education status (SPED) at level 2. Model A represents the unconditional means or “empty” model. 
Model B represents the unconditional growth model, and Model C represents the conditional model. Three separate 
model taxonomies were constructed – one for each CBM type.  
 

Next, an unconditional growth model was estimated for each probe type. In this model, time was added to 

the unconditional means model as a level-1 predictor. The unconditional growth model allows one to partition and 

quantify variation across both people and time (Singer & Willett, 2003). Time was entered as a random effect, which 

allowed each student to have his or her own growth rate over the course of the study. Equations for unconditional 

growth models may be found in Table 21. For all probe types, measurement occasions were balanced across students 

with no missing data. Measurement occasions were adjusted such that 0 represented the first occasion of data 

collection.  

Finally, student-level predictors (i.e., special education status and free/reduced lunch status) were added to 

each model at level 2.  Model fit was evaluated at each progression using deviance statistics and a measure of 

Pseudo R2. This statistic allows one to calculate how well subsequent models reduce the proportion of residual 

variance compared to the previous model (Singer & Willett, 2003). It is important to note that deviance statistics are 

only useful in comparing models that are nested within each other (Raudenbush & Bryk, 2002), and, in the use of 

RML, only differ in their variance components. As such, these statistics were only used to compare model fit 

between the unconditional means and unconditional growth models. 
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Prediction model. The model used to evaluate which CBM probe type best predicted reading 

comprehension included two levels, which included student scores on predictor variables at level-1 nested within 

schools at level-2. Again, the small number of schools limits interpretability; however, it was determined that it was 

important to account for the nested nature of scores. Like the growth models, a taxonomical approach was used to 

evaluate research question two. A taxonomy of model fitting may be found in Table 4. 

Table 4. Taxonomy of multilevel models for change fitted to CBM data  
 
 
 Level-1/Level-2 specification 

 
  

Model Level-1 Model Level-2 Model Composite Model 
A RCOMPij = β0j + rij β0j = γ00 + u0j RCOMPij = γ00 + u0j + rij 

B RCOMPij = β0j + β1j(MAZEij) 

+ β2j(DORFij) + β3j(RTFij) + 

r0J 

β0j = γ00 + u0j, 

β1j = γ10 

β2j = γ20 

β3j = γ30 

RCOMPij = γ00 + γ10 (MAZEij) + 

γ20 (DORFij) + γ30(RTFij) + u0j, 

+ r0J  

Note: These models use CBM scores (i.e., MAZE, DORF, RTF) to predict reading comprehension (RCOMP) scores 
at level 1. Model A represents the unconditional means or “empty” model. Model B represents the 2-level model 
with predictors included.  
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RESULTS 

Phase One: Identification of Equivalent Passage Sets 

Table 5 indicates the means, standard deviations, and final results of rank-ordering R-Maze passages by 

their respective grand means. Prior to rank-ordering, the range in mean correct selections between the 27 available 

R-Maze progress monitoring probes was 9.74 (13.58 – 23.32). After rank-ordering passages for R-Maze around the 

grand mean and selecting the five passages immediately above and below the mean, this range was reduced to 3.55 

(16.60 – 20.15). The 10 R-Maze passages identified through rank-ordering around the grand mean were then 

retained for use in the next phase of the study.      

Table 5. Numerical and Rank Ordering of R-Maze Probes following Passage Equating 
 

Numerical Order  Rank Order 

R-Maze 
Probe Number N 

Number 
Correct 

Mean (SD) 

 
R-Maze 

Probe Number N 

Number 
Correct 

Mean (SD) 
4P04 At my house 25 20.08 (6.34)  2P14 It all began 22 23.32 (7.02) 
2P05 Aunt Pam worked 28 19.25 (5.51)  2P18 Kim was happy 25 22.13 (6.25) 
2P06 Cam was a clam 25 15.92 (7.88)  2P32 Tom and his family 22 20.91 (7.98) 
2P07 Cole and Meg 26 16.00 (7.78)  2P16 It was the first 23 20.87 (6.27) 
2P08 Dad was upset 24 20.42 (5.72)  2P29 A mother held 23 20.48 (5.46) 
2P09 Last week Grandpa 25 16.56 (5.50)  2P08 Dad was upset 24 20.42 (5.72) 
2P10 I can say many 28 16.25 (5.87)  2P28 The lion was 25 20.28 (6.01) 
2P11 I wish I 25 17.64 (5.74)  2P19 Maddie wanted to** 26 20.15 (7.90) 
2P12 Not very long ago 24 20.00 (5.40)  4P04 At my house** 25 20.08 (6.34) 
2P14 It all began 22 23.32 (7.02)  2P12 Not very long ago** 24 20.00 (5.40) 
2P16 It was the first 23 20.87 (6.27)  2P05 Aunt Pam worked** 28 19.25 (5.51) 
2P17 Joey liked to 26 13.58 (7.67)  2P31 Today is the animal** 25 19.16 (5.47) 
2P18 Kim was happy 25 22.13 (6.25)  2P11 I wish I** 25 17.64 (5.74) 
2P19 Maddie wanted to 26 20.15 (7.90)  2P30 This is a tale** 25 17.40 (6.02) 
2P20 My dad can fix 25 16.60 (5.87)  2P27 The kids in** 26 17.35 (5.77) 
2P21 My little sister Emma 25 13.96 (7.97)  2P25 Pat loved to make** 25 16.68 (5.66) 
2P22 My teacher says 25 15.88 (5.88)  2P20 My dad can fix** 25 16.60 (5.87) 
2P23 One spring day, Mark 25 16.28 (7.06)  2P09 Last week Grandpa 25 16.56 (5.50) 
2P25 Pat loved to make 25 16.68 (5.66)  2P23 One spring day, Mark 25 16.28 (7.06) 
2P26 Can animals really 28 14.79 (5.10)  2P10 I can say many 28 16.25 (5.87) 
2P27 The kids in 26 17.35 (5.77)  2P33 Where is your fort 25 16.12 (5.85) 
2P28 The lion was 25 20.28 (6.01)  2P07 Cole and Meg 26 16.00 (7.78) 
2P29 A mother held 23 20.48 (5.46)  2P06 Cam was a clam 25 15.92 (7.88) 
2P30 This is a tale 25 17.40 (6.02)  2P22 My teacher says 25 15.88 (5.88) 
2P31 Today is the animal 25 19.16 (5.47)  2P26 Can animals really 28 14.79 (5.10) 
2P32 Tom and his family 22 20.91 (7.98)  2P21 My little sister Emma 25 13.96 (7.97) 
2P33 Where is your fort 25 16.12 (5.85)  2P17 Joey liked to 26 13.58 (7.67) 
Grand Mean (SD) 676 18.08 (6.74)  Grand Mean (SD) 676 18.08 (6.74) 
Note: ** indicates passages retained for Phase Two. 
 

The means, standard deviations, and final results of rank-ordering DORF passages by their respective 

WCPM grand means are found in Table 6. 
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Table 6. Numerical and Rank Ordering of DIBELS Oral Reading Fluency Probes following Passage Equating 
 

Numerical Order  Rank Order 

DIBELS Probe Number N 
Mean  

WRCM (SD)  DIBELS Probe Number N 
Mean  

WRCM (SD) 
L2PM1  
Building Happy Places 

 
27 

 
96.00 (28.82) 

 L2PM10 
Bats Are Not Birds 

 
32 

 
116.16 (26.85) 

L2PM2 
Luke Makes His Move 

 
27 

 
106.04 (26.97) 

 L2PM15 
Going to School 

 
25 

 
115.48 (24.28) 

L2PM3 
My Pen Pal 

 
28 

 
107.00 (35.38) 

 L2PM12 
Writing Your Own Book 

 
27 

 
112.67 (25.91) 

L2PM4 
Life on the River 

 
27 

 
102.78 (25.52) 

 L2PM8 
Dear Diary 

 
26 

 
112.65 (40.96) 

L2PM5 
A Day for Trees 

 
32 

 
90.44 (30.04) 

 L2PM11 
Cooking School 

 
32 

 
108.75 (28.12) 

L2PM6 
Making Orange Juice 

 
28 

 
103.89 (37.08) 

 L2PM16 
A Happy House Plant** 

 
26 

 
107.73 (41.05) 

L2PM7 
Kim Gets Ready 

 
32 

 
106.53 (31.67) 

 L2PM18 
Canoe Fun** 

 
26 

 
107.62 (35.10) 

L2PM8 
Dear Diary 

 
26 

 
112.65 (40.96) 

 L2PM3 
My Pen Pal** 

 
28 

 
107.00 (35.38) 

L2PM9 
Circus Tickets 

 
25 

 
100.88 (36.03) 

 L2PM7 
Kim Gets Ready** 

 
32 

 
106.53 (31.67) 

L2PM10 
Bats Are Not Birds 

 
32 

 
116.16 (26.85) 

 L2PM19 
African Drums** 

 
27 

 
106.38 (36.77) 

L2PM11 
Cooking School 

 
32 

 
108.75 (28.12) 

 L2PM2 
Luke Makes His Move** 

 
27 

 
106.04 (26.97) 

L2PM12 
Writing Your Own Book 

 
27 

 
112.67 (25.91) 

 L2PM6 
Making Orange Juice** 

 
28 

 
103.89 (37.08) 

L2PM13 
In Space for an Hour 

 
26 

 
103.69 (34.72) 

 L2PM13 
In Space for an Hour** 

 
26 

 
103.69 (34.72) 

L2PM14 
Wind Power 

 
26 

 
98.65 (33.50) 

 L2PM4 
Life on the River** 

 
27 

 
102.78 (25.52) 

L2PM15 
Going to School 

 
25 

 
115.48 (24.28) 

 L2PM9 
Circus Tickets** 

 
25 

 
100.88 (36.03) 

L2PM16 
A Happy House Plant 

 
26 

 
107.73 (41.05) 

 L2PM14 

Wind Powera 
 

26 
 

98.65 (33.50) 
L2PM17 
A Gift of Chores 

 
27 

 
94.33 (37.16) 

 L2PM1 
Building Happy Places 

 
27 

 
96.00 (28.82) 

L2PM18 
Canoe Fun 

 
26 

 
107.62 (35.10) 

 L2PM17 
A Gift of Chores 

 
27 

 
94.33 (37.16) 

L2PM19 
African Drums 

 
27 

 
106.38 (36.77) 

 L2PM20 
Flower Parts 

 
28 

 
93.33 (30.37) 

L2PM20 
Flower Parts 

 
28 

 
93.33 (30.37) 

 L2PM5 
A Day for Trees 

 
32 

 
90.44 (30.04) 

Grand Mean (SD) 554 104.55 (32.78)  Grand Mean (SD) 554 104.55 (32.78) 
Note: ** indicates passages retained for Phase Two; aindicates a passage that was identified through rank-ordering 
but was then eliminated from the passage set due to having a WCPM score outside of the recommended range of the 
mean. 

Prior to rank-ordering DORF passages, the range in mean WCPM for the 20 available DIBELS progress 

monitoring passages was 25.72 (90.44 – 116.16). After initial rank-ordering and identifying the five passages 

immediately above and below the grand mean, the difference in WCPM between passages in the new equivalent set 

was 8.97 (98.65 - 107.62). The highest-ranked probe was within 3.07 WCPM of the grand mean, while the lowest-
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ranked probe was within 5.9 WCPM of the grand mean. Given Poncy et al.’s (2005) recommendation that read 

aloud progress monitoring passage fall within 5 WCPM of the mean of the set, the lowest-ranked probe (i.e., 

L2PM14, Wind Power) was replaced with probe L2PM16, A Happy House Plant. This probe was ranked 

immediately above the fifth passage above the grand mean. This replacement adjusted the overall range of the new 

passage set to 6.85 (100.88 – 107.73). Furthermore, the highest-ranked probe was now within 3.18 WCPM of the 

grand mean while the lowest-ranked probe was within 3.67 WCPM of the grand mean. Given these improvements, 

the six passages immediately above the grand mean and the four passages immediately below were retained for use 

in Phase Two.  

Finally, Table 7 shows the means, standard deviations, and rank-ordering results for DIBELS RTF 

passages. DIBELS passages were equated based on DORF performance and WCPM means rather than the mean 

number of words recalled on RTF tasks. As shown in Table 7, passages that were most alike in terms of WCPM 

were not necessarily the most alike in terms of average number of words recalled during RTF. Potential implications 

of this discrepancy are discussed in a subsequent chapter.    

Table 7. Numerical and Rank Ordering of DIBELS Retell Fluency Probes following Passage Equating 
 

Numerical Order  Rank Order 

DIBELS Probe Number N 
Mean Words 

Recalled (SD)  DIBELS Probe Number N 
Mean Words 

Recalled (SD) 
L2PM1 
Building Happy Places 

 
27 40.30 (22.79) 

 L2PM11 
Cooking School 32 58.19 (26.30) 

L2PM2 
Luke Makes His Move 

 
27 52.56 (23.47) 

 L2PM2 
Luke Makes His Move** 27 52.56 (23.47) 

L2PM3 
My Pen Pal 

 
28 32.21 (18.59) 

 L2PM8 
Dear Diary 26 52.46 (25.17) 

L2PM4 
Life on the River 

 
27 37.85 (18.42) 

 L2PM9 
Circus Tickets** 25 48.00 (21.70) 

L2PM5 
A Day for Trees 

 
32 34.63 (16.76) 

 L2PM7 
Kim Gets Ready** 32 45.41 (24.84) 

L2PM6 
Making Orange Juice 

 
28 32.43 (17.59) 

 L2PM10 
Bats Are Not Birds 32 44.72 (21.63) 

L2PM7 
Kim Gets Ready 

 
32 45.41 (24.84) 

 L2PM13 
In Space for an Hour** 26 43.38 (17.81) 

L2PM8 
Dear Diary 

 
26 52.46 (25.17) 

 L2PM18 
Canoe Fun** 26 42.54 (21.33) 

L2PM9 
Circus Tickets 

 
25 48.00 (21.70) 

 L2PM12 
Writing Your Own Book 27 41.96 (23.94) 

L2PM10 
Bats Are Not Birds 

 
32 44.72 (21.63) 

 L2PM15 
Going to School 25 41.44 (20.06) 

L2PM11 
Cooking School 

 
32 58.19 (26.30) 

 L2PM17 
A Gift of Chores 27 40.96 (23.53) 

L2PM12 
Writing Your Own Book 

 
27 41.96 (23.94) 

 L2PM1 
Building Happy Places 27 40.30 (22.79) 
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(Table 7 continued) 
 

Numerical Order  Rank Order 

DIBELS Probe Number N 
Mean Words 

Recalled (SD)  DIBELS Probe Number N 
Mean Words 

Recalled (SD) 
L2PM13 
In Space for an Hour 

 
26 43.38 (17.81) 

 L2PM16 
A Happy House Plant** 26 

 
39.81 (22.23) 

L2PM14 
Wind Power 

 
26 27.04 (21.89) 

 L2PM4 
Life on the River** 27 37.85 (18.42) 

L2PM15 
Going to School 

 
25 41.44 (20.06) 

 L2PM5 
A Day for Trees 32 34.63 (16.76) 

L2PM16 
A Happy House Plant 

 
26 39.81 (22.23) 

 L2PM20 
Flower Parts 28 33.48 (18.08) 

L2PM17 
A Gift of Chores 

 
27 40.96 (23.53) 

 L2PM6 
Making Orange Juice** 28 32.43 (17.59) 

L2PM18 
Canoe Fun 

 
26 42.54 (21.33) 

 L2PM3 
My Pen Pal** 28 32.21 (18.59) 

L2PM19 
African Drums 

 
27 31.85 (18.90) 

 L2PM19 
African Drums** 27 31.85 (18.90) 

L2PM20 
Flower Parts 

 
28 33.48 (18.08) 

 L2PM14 
Wind Powera 26 27.04 (21.89) 

Grand Mean (SD) 554 41.19 (22.50)  Grand Mean (SD) 554 41.19 (22.50) 
Note: ** indicates passages retained for Phase Two; aindicates a passage that was identified through rank-ordering 
but was then eliminated from the passage set due to having a WCPM score outside of the recommended range of the 
mean. 
 
Phase Two: Progress Monitoring 

Descriptive statistics for the student performance on the three different probe types may be found in Table 

8. These data reflect the final number of occasions included in analyses for each probe type following removal of 

outliers, as well as the minimum and maximum scores achieved on each probe type.   

Table 8. Descriptive Statistics for Growth Models 
 
Variable N Mean SD Minimum Maximum 
R-Maze 255 10.96 5.02 1 25 
DORF 255 68.03 23.37 15 125 
RTF 253 32.22 16.28 0 78 
FRL 32 0.47 0.50 0 1 
SPED 32 0.38 0.49 0 1 
Note: FRL = Free/Reduced Lunch Status; SPED = Special Education Status 

Bivariate correlations for predictors included in growth models are found in Table 9. These correlations for 

each probe type indicate CBM scores aggregated across all occasions. All CBM probe types were positively 

correlated with each other, with DORF and R-Maze showing the strongest relationship (r = .58, p < .01). 

Furthermore, all CBM probe types were negatively correlated with both free/reduced lunch status and special 

education status, indicating that students who were eligible for free/reduced lunch or received special education 
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services scored lower on these measures compared to their counterparts who were not eligible for free/reduced lunch 

or did not receive special education services. 

Table 9. Bivariate Correlations Between Predictors for Growth Model 
 
 R-Maze DORF RTF FRL SPED 
DORF .58** 1 .35** -.61** -.35** 
RTF .23** .35** 1 -.25** -.44** 
FRL -.39** -.61** -.25** 1 .10 
SPED -.31** -.35** -.44** .10 1 
Note: FRL = Free/Reduced Lunch Status; SPED = Special Education Status 
** p < .01 

Growth models. In order to evaluate student growth, separate hierarchical linear growth models were built 

for each individual CBM probe type. Model building progressed in the sequence described above. Each model 

included two levels, in which measurement occasions (i.e., time) at level-1 were nested within individual students at 

level-2. The contributions of student socioeconomic status, as indicated by eligibility for free or reduced lunch, and 

student special education status were also evaluated by including these variables as predictors at level-2.  

R-Maze growth. R-Maze was entered as an outcome variable for the unconditional means model. Results 

of this model (Table 10) indicated a significant coefficient of 10.96 (p < .001), indicating that the grand mean of R-

Maze scores across all occasions and all students was different than zero. Furthermore, results for the random effects 

portion in this model indicate that R-Maze scores vary significantly across students (χ2 =326.20, df = 31, p < .001). 

Finally, this model resulted in an intra-class correlation (ICC) of 0.548, indicating that 54.8% of the variance in R-

Maze scores can be attributed to differences between students.  

Table 10. Results of the Unconditional Means Model: AIMSweb R-Maze 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 
Mean initial status, β00 
 

10.96 0.70 15.75 31 < .001 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, r0 14.03 3.75 326.20 31 < .001 
Level-1 error, e 11.56 3.50    

The unconditional growth model (Table 11) was specified next by adding time (i.e., the “occasion” 

variable) to the unconditional means model as a random effect. Results of this model estimate an average R-Maze 

score of 8.58 correct selections on the first occasion of data collection and that scores increased, on average, 0.68 

correct selections at each subsequent measurement occasion during the study (p < .001). Furthermore, results of 

random effects show a significant intercept (χ2 = 154.31, df = 31, p < .001) and slope (χ2 = 47.76, df = 31, p < .05), 
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indicating that students vary significantly on their R-Maze scores at the beginning of the study, and that there was 

significant variation in their growth rates over the course of the study. These results support the inclusion of time as 

a random, rather than fixed, effect in the model. The proportional reduction in residual variance from the 

unconditional means model to the unconditional growth model was calculated using the following formula: 

Pseudo R2 = σ2 (unconditional means model) – σ2 (unconditional growth model)  
    σ2 (unconditional means model) 
 

Results indicate pseudo R2 = .294, suggesting that 29.4% of the within-person variation in R-Maze scores can be 

explained by time. Furthermore, the deviance in this model was reduced by 63.72, which significantly improved 

model fit (χ2 = 63.72, df = 2, p < .001). 

Table 11. Results of the Unconditional Growth Model: AIMSweb R-Maze 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Mean initial status, β00 8.58 0.73 11.80 31 < .001 

Mean growth rate, β10 0.68 0.10 7.02 31 < .001 
 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, r0i 13.53 3.68 154.31 31 < .001 
Growth rate, r1i 0.11 0.33 47.76 31 0.03 
Level-1 error, eti 8.16 2.86    

Finally, student-level variables (i.e., FRL and SPED) were added to the unconditional growth model as 

level-2 predictors for the initial status and rate of change of R-Maze scores. Table 12 shows results of this model. 

Estimation of the fixed effects of the model indicate that both FRL status and SPED status were significantly related 

to R-Maze performance. Specifically, students who were eligible for FRL scored, on average, 4.03 selections lower 

on their first R-Maze than students who were not eligible for FRL (p < .001) and students who received SPED 

services scored, on average, 4.05 selections lower on their first R-Maze than students who did not receive SPED 

services (p < .001). Furthermore, slope estimates for fixed effects indicate that individual students’ growth rates did 

not differ significantly based on their FRL (p = 0.63) or SPED (p = 0.08) status. Random effect estimates indicated 

that there is still residual level-1 variance that could be explained, although such predictors were not measured in 

this study. Further model specification may also help explain remaining variance in students’ initial status. Finally, 

the addition of FRL and SPED explained less than 1% more variance than the unconditional growth model. 
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Table 12. Results of the Conditional Model: AIMSweb R-Maze 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Model for initial status, π0i      

Mean initial status, β00 11.86 0.78 15.19 29 < .001 
     FRL, β01 -4.03 1.05 -3.82 29 < .001 
     SPED, β02 -4.05 1.08 -3.76 29 < .001 

Model for growth rate, π1i      

     Mean growth rate, β10 0.51 0.14 3.58 29 .001 

     FRL, β10 0.09 0.19 0.48 29 .63 

     SPED, β10 .35 .20 1.79 29 .08 

Random Effect 

 
Variance 

Component sd   χ2   df   p-value 

Initial status, r0i 5.24 2.29 73.55 29 < .001 

Growth rate, r1i 0.09 0.30 42.48 29 .05 

Level-1 error, eti 8.16 2.86    
Note: FRL = Free/Reduced Lunch Status; SPED = Special Education Status 

DORF growth. Model building for DORF proceeded in much the same way as R-Maze. First, DORF was 

entered as an outcome variable for the unconditional means model. Results of this model (Table 13) indicated initial 

status of DORF performance at 68.03 WCPM. Like R-Maze, the intercept for DORF was significant (p < .001), 

indicating that the grand mean of DORF scores across all occasions and all students is different than zero. The 

random effects estimates of this model showed that DORF scores varied significantly across students (χ2 = 1238.53, 

df = 31, p < .001). Finally, the unconditional means model for DORF resulted in an ICC of 0.832, indicating that 

83.2% of the variance in DORF scores can be attributed to differences between students.  

Table 13. Results of the Unconditional Means Model: DIBELS Oral Reading Fluency (DORF) 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 
Mean initial status, β00 
 

68.03 3.87 17.59 31 < .001 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, r0 467.04 21.61 1238.53 31 < .001 
Level-1 error, e 94.09 9.70    
 

The DORF unconditional growth model (Table 14) was specified next and again added time to the 

unconditional means model as a random effect. Results of this model revealed a significant intercept and estimate an 

initial DORF score of 67.45 WCPM (p < .001); however, fixed effect slope estimates for DORF were non-
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significant (b = 0.17, p = 0.47) indicating that, on average, DORF scores did not show a significant rate of change 

over the course of the study. Results of random effects show a significant intercept (χ2 = 373.52, df = 31, p < .001), 

again indicating that individual student DORF scores vary significantly at the first measurement occasion. Random 

effects estimates of slope were non-significant (χ2 = 41.25, df = 31, p > .05), indicating that there were not 

significant individual differences in students’ growth rates on the DORF probes. The proportional reduction in 

residual variance from the unconditional means model to the unconditional growth model showed that just 4.2% of 

the within-person variation in DORF scores can be explained by time. Deviance from the unconditional means to 

unconditional growth models reduced by just 4.21 after adding time as a random effect and was not a significant 

improvement in model fit (χ2 = 4.21, df = 2, p > .05). 

Table 14. Results of the Unconditional Growth Model: DIBELS Oral Reading Fluency (DORF) 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Mean initial status, β00 67.45 3.77 17.90 31 < .001 

Mean growth rate, β10 0.17 0.30 0.56 31 0.58 
 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, r0i 416.90 20.42 373.52 31 < .001 
Growth rate, r1i 0.71 0.84 41.25 31 .10 
Level-1 error, eti 90.19 9.50    

Again, student-level predictors were entered at level-2 in an attempt to explain additional variance. Given 

that the unconditional growth model indicated that slopes for DORF scores did not vary significantly over the course 

of the study, the purpose of including student-level variables in this model was to assess whether their relationships 

with students’ initial DORF scores. Student eligibility for FRL and student SPED status were entered 

simultaneously as fixed effects. Results of this model may be found in Table 15. Estimation of the fixed effects of 

the model indicate that students’ FRL status was significantly related to their initial DORF performance. 

Specifically, students who qualify for FRL scored an average of 28.53 WCPM below students who do not qualify 

for FRL on their first DORF probe (p < .001). Students who received SPED services initially scored an average of 

12.46 WCPM below students who did not receive SPED services (p < .05). As expected, slope estimates for all 

variables were non-significant. Examination of random effects indicates that, like R-Maze, there is still residual 

level-1 variance in DORF scores that could be explained, although additional potential predictors of interest were 
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not measured in this study. Finally, the addition of FRL and SPED explained 4.2% more variance in DORF scores 

than the unconditional growth model.   

Table 15. Results of the Conditional Model: DIBELS Oral Reading Fluency (DORF) 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Model for initial status, π0i      

Mean initial status, β00 84.60 3.81 22.18 29 < .001 
     FRL, β01 -28.53 5.14 -5.55 29 < .001 
     SPED, β02 -12.46 5.27 -2.36 29 .03 

Model for growth rate, π1i      

     Mean growth rate, β10 0.25 0.46 0.55 29 .58 

     FRL, β10 0.28 0.62 0.45 29 .66 

     SPED, β10 -0.55 0.63 -0.87 29 .39 

Random Effect 

 
Variance 

Component sd   χ2   df   p-value 

Initial status, r0i 168.74 12.99 159.09 29 < .001 

Growth rate, r1i 0.80 0.89 40.00 29 .08 

Level-1 error, eti 90.25 9.50    
Note: FRL = Free/Reduced Lunch Status; SPED = Special Education Status 

RTF growth. Like R-Maze and DORF, RTF was entered as an outcome variable for the unconditional 

means model. Results of this model (Table 16) showed a significant mean initial status (b = 32.22, p < .001), 

allowing us to reject the null hypothesis that the grand mean of RTF scores is not significantly different than zero.  

Table 16. Results of the Unconditional Means Model: DIBELS Retell Fluency (RTF) 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 
Mean initial status, β00 
 

32.22 2.30 14.02 31 < .001 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, r0 156.12 12.49 401.52 31 < .001 
Level-1 error, e 97.03 9.85    
 

Estimates of the variance components for this model suggest that RTF scores vary significantly across 

students (χ2 = 401.52, df = 31, p < .001). An ICC of 0.617 was calculated for the model, indicating that 61.7% of the 

variance in RTF scores can be attributed to differences between students.  

The unconditional growth model (Table 17) for RTF was specified next, again by adding time to the empty 

model as a random effect. Fixed effects estimates revealed a similar pattern as those for the unconditional growth 
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model for DORF. Specifically, results showed a significant initial status coefficient of 33.27 words recalled (p < 

.001) but did not indicate a significant fixed effect slope estimate for RTF (p = 0.70), indicating that mean RTF 

scores did not vary significantly over the course of the study. An examination of the variance components for this 

model indicates a significant intercept (χ2 = 129.98, df = 31, p < .001), and a non-significant slope (χ2 = 40.62, df = 

31, p > .05). Together, these results suggest that there were individual differences in student RTF performance at the 

beginning of the study, but that there were not significant differences in individual growth over time. The 

proportional reduction in residual variance from the unconditional means model to the unconditional growth model 

was .033, indicating that just 3.3% of the variation in RTF scores in this study can be explained by time; however, 

deviance from the unconditional means to unconditional growth models was significantly reduced (χ2 = 18.35, df = 

2, p < .001), indicating that adding time as a random effect improved model fit. 

Table 17. Results of the Unconditional Growth Model: DIBELS Retell Fluency (RTF) 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Mean initial status, β00 33.27 2.31 14.36 31 < .001 

Mean growth rate, β10 -0.31 0.31 -1.01 31 .32 
 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, r0i 130.68 11.43 129.98 31 < .001 
Growth rate, r1i 0.67 0.82 40.62 31 .12 
Level-1 error, eti 93.81 9.69    

Finally, student-level predictors were entered at level-2 in an attempt to explain additional variance. Once 

again, student eligibility for FRL and student SPED status were entered simultaneously as fixed effects in an effort 

to explain individual differences in initial RTF scores. Results of this model may be found in Table 18. Estimation 

of the fixed effects of the model indicate that students who qualify for FRL did not differ significantly from students 

who did not qualify for FRL, either in terms of their initial RTF score (p = 0.27) or in terms of their RTF growth 

over the course of the study (p = 0.40). Students who received SPED services scored an average of 13.72 recalled 

words lower than their non-SPED counterparts on their first RTF probe (p < 0.01), but did not differ significantly 

from non-SPED students in their RTF growth rates (p = 0.56). Random effect estimates indicated similar results as 

those for other CBM probe types in that there is still residual level-1 variance that could be explained. Lastly, adding 

level-2 predictors resulted in less than a 1% reduction in residual variance. 
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Table 18. Results of the Conditional Model: DIBELS Retell Fluency (RTF) 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Model for initial status, π0i      

Mean initial status, β00 40.34 2.99 13.49 29 < .001 
     FRL, β01 -4.55 4.00 -1.14 29 .27 
     SPED, β02 -13.72 4.09 -3.35 29 .002 

Model for growth rate, π1i      

     Mean growth rate, β10 0.10 0.49 0.20 29 .85 

     FRL, β10 -0.55 0.64 -0.86 29 .40 

     SPED, β10 -0.39 0.65 -0.60 29 .56 

Random Effect 

 
Variance 

Component sd   χ2   df   p-value 

Initial status, r0i 84.05 9.17 87.83 29 < .001 

Growth rate, r1i 0.84 0.92 39.55 29 .09 

Level-1 error, eti 93.55 9.67    
Note: FRL = Free/Reduced Lunch Status; SPED = Special Education Status 

Predicting comprehension. Descriptive statistics for the prediction model may be found in Table 19. 

These data reflect average scores across all 32 students included in the study based on the CBM score obtained 

during the first occasion of data collection.  

Table 19. Descriptive Statistics for Prediction Model 
 
Variable N Mean SD Minimum Maximum 
RCOMP 32 473.97 9.62 456 492 
Initial R-Maze 32 7.88 4.58 2 17 
Initial DORF 32 70.63 22.18 32 112 
Initial RTF 32 33.59 13.04 5 65 
Note: RCOMP = Reading Comprehension Score; “Initial” refers to score at first measurement occasion  

 Bivariate correlations between variable used to predict reading comprehension are detailed in Table 20. 

These correlations indicated the relationship between variables based on CBM scores from the first occasion of data 

collection. Like correlations found above in Table 9, R-Maze scores were correlated with both DORF and RTF, and 

its relationship with DORF was the strongest (r = .78, p < .01). Unlike the correlations using aggregated scores 

across all occasions, initial DORF and RTF scores were not significantly related. Furthermore, only R-Maze showed 

significant negative relationships with both free/reduced lunch status and special education status. For R-Maze, 



www.manaraa.com

 

49 
	

students who were eligible for free/reduced lunch or receiving special education services tended to score lower on 

these tasks. For DORF, students who were eligible for free/reduced lunch tended to read fewer words correct per 

minute, while the relationship between DORF and special education status was non-significant. Finally, students 

who received special education services tended to recall fewer words on RTF tasks compared to their counterparts 

who did not receive these services. There was not a significant relationship between RTF and free/reduced lunch 

status.  

Table 20. Bivariate Correlations Between Predictors for Prediction Model 
 
 R-Maze DORF RTF FRL SPED 
DORF .78** 1 .10 -.64** -.34 
RTF .38* .10 1 -.12 -.51** 
FRL -.54** -.64** -.12 1 .10 
SPED -.54** -.34 -.51** .10 1 
Note: FRL = Free/Reduced Lunch Status; SPED = Special Education Status 
* p < .05; ** p < .01 

Finally, Table 21 shows the bivariate correlations between students’ initial scores on the different CBM 

probe types and scores on individual WJ-IV reading comprehension subtests, as well as the reading comprehension 

composite score. Students’ initial R-Maze and DORF were significantly related to their scores on the Passage 

Comprehension and Reading Vocabulary subtests, as well as their composite Reading Comprehension score. Neither 

R-Maze nor DORF were significantly related to Reading Recall subtests. Initial RTF scores were significantly 

related to Reading Vocabulary and composite Reading Comprehension scores. All significant correlations indicated 

positive relationships, suggesting that as students’ scores on the different CBM measures increased, their scores on 

the WJ-IV subtests also increased. The only WJ-IV subtest which was not related to any CBM probe type was the 

Passage Comprehension subtest.  

Table 21. Bivariate Correlations Between CBM Measures and WJ-IV Reading Comprehension Subtests 
 
 R-Maze DORF RTF PCOMP RECALL VOCAB RCOMP 
DORF .78** 1 .10 .73** .21 .64** .68** 
RTF .38* .10 1 .28 .29 .51** .45* 
PCOMP .83** .73** .28 1 .36** .71** .89** 
RECALL .34 .21 .29 .36* 1 .06 .65** 
VOCAB .77** .64** .51** .71** .34 1 .87** 
RCOMP .83** .68** .45* .89** .65** .87** 1 
Note: PCOMP = Passage Comprehension; RECALL = Reading Recall; VOCAB = Reading Vocabulary; RCOMP = 
Total Reading Comprehension Score 
* p < .05; ** p < .01 
 

In order to address the second research question as to which CBM type was the best predictor of reading 

comprehension, a 2-level unconditional model was constructed using RCOMP, or the total reading comprehension 
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score on the WJ-IV Reading Comprehension – Extended cluster (McGrew et al., 2014) as an outcome variable. 

Results of this model (Table 22) showed a significant fixed effect coefficient of 473.52 (p < .001), indicating that the 

grand mean of RCOMP scores is significantly different than zero. Estimates of the variance components for this 

model suggest were non-significant (χ2 = 38.35, df = 31, p = 0.17). This finding indicates that RCOMP scores did 

not vary significantly by school; however, remaining variance at level-1 suggests that the addition of additional 

time-varying predictors (i.e., CBM scores) could potentially explain more variance.   

Table 22. Results of the Unconditional Model: Predicting Reading Comprehension 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 
Mean initial status, γ00 
 

473.52 1.69 279.58 30 < .001 

Random Effect 
Variance 

Component sd   χ2   df   p-value 
Initial status, u0 17.04 4.13 37.11 30 .17 
Level-1 error, r 71.88 8.47    
 

As a result, students’ initial scores for R-Maze, DORF, and RTF were entered simultaneously at level-1 as 

fixed predictors. Results of this model can be found in Table 23, and showed that R-Maze was the only significant 

predictor of reading comprehension, (b = 1.23, p < .01). Furthermore, comparison of the unconditional and 

conditional models resulted in Pseudo R2 = .660, indicating a 66% reduction in level-1 variance after adding CBM 

scores as predictors. 

Table 23. Results of the Conditional Model: Predicting Reading Comprehension 
 
Fixed Effect Coefficient se t-Ratio Approx. df p-value 

Mean initial status, γ00 453.48 4.74 95.66 30 < .001 
R-Maze, γ10 1.23 0.40 3.09 28 .004 
DORF, γ20 0.08 0.08 1.04 28 .31 
RTF, γ30 0.15 0.09 1.75 28 .09 

Random Effect 
Variance 

Component sd   χ2   df   p-value 

Initial status, u0 5.14 2.27 32.68 30 .34 

Level-1 error, ri 24.46 4.95    
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DISCUSSION 

The purpose of the current study was to identify two sets of equivalent reading CBM passage sets, and then 

compare their utility in monitoring reading growth and predicting reading comprehension in second-grade students. 

Field-testing and rank-ordering procedures were used to equate passages in an effort to reduce measurement error. 

Hierarchical linear modeling was employed to determine how well each probe type (i.e., DORF, Retell, and R-

Maze) measured growth over the course of the study, as well as determine which probe type best predicted student 

performance on the WJ-IV Reading Comprehension – Extended cluster (McGrew et al., 2014). These procedures 

were carried out in an effort to answer two primary research questions. A discussion of each research question 

follows, as well as discussion of the research and practical implications of the findings from the current study. 

1. After equating passages, which CBM probe type (i.e., R-Maze, DORF, or RTF) is the most 

sensitive to reading growth in second graders over eight weeks? Additionally, does growth differ 

depending on certain student characteristics (i.e., free/reduced lunch status or special education 

services)? 

Results of HLM analysis showed that R-Maze was the only CBM probe type that indicated significant rates 

of change for individual students over the course of the study. These results concur with that of Shin et al. (2000), 

who found that Maze is sensitive in measuring reading growth in second-grade students. One possible threat to the 

validity of these results is that the students in the study were unfamiliar with Maze tasks prior to participating. As 

such, it is possible that the growth estimates found in this study were confounded by students scoring higher on the 

task as they became more familiar with the structure of the probes and the requirements of the task. Furthermore, 

student FRL or SPED status did not influence growth rates on R-Maze. This finding is somewhat surprising, 

particularly for SPED. Previous research (Christ et al., 2010 Shin et al., 2000) has indicated that students receiving 

SPED services typically show a slower growth rate on reading CBM measures than their peers who do not receive 

SPED services. A potential explanation for this finding is that SPED services were not specified in this study, and 

that findings would closer resemble those of other studies if students who had a reading disability and were 

receiving reading services were differentiated from those who received other services, such as behavioral 

interventions or speech/language services as part of their special education plan.  

The finding that DORF was not an indicator of student growth is somewhat surprising, although it agrees 

with the Ardoin et al (2013) review indicating that there is not sufficient evidence to promote the use of read aloud 
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as a progress monitoring tool. While DORF has been shown to be indicative of student reading growth over the 

course of the year, it is possible that it is less sensitive to short-term changes like those in the current study. It is also 

possible that field-testing and rank-ordering efforts did not result in sufficient passage equivalence, and that 

measurement error contributed to these results. Indeed, this explanation is plausible given that Cummings et al. 

(2014) found that, even after DIBELS Next (Good & Kaminski, 2011) passages were field-tested, significant form 

effects were still observed.  

Additional factors such as familiarity with passages and timing of data collection could also explain some 

of the results found for DORF. Specifically, unlike R-Maze, DORF was a familiar task for all students included in 

the study. This may have affected individual students’ motivation to perform on these tasks. Indeed, one student was 

observed to say during the study, “I’ve read this story before, it’s boring.” While not an empirical finding, this 

anecdotal evidence suggests that there may be other factors contributing to observed DORF/RTF scores. Moreover, 

this study was conducted in the spring, and previous studies have found that second-graders’ growth curves in 

reading fluency have largely stabilized by the end of the year (Kim, Petscher, Schatschneider, & Foorman, 2010). 

Also, lack of growth may be due to a seasonal effect, given Christ et al.’s (2010) finding that student growth rates on 

read aloud measures slowed during winter-to-spring compared to fall-to-winter.  

Finally, the finding that RTF was not an indicator of growth was expected, and agrees with previous 

research that RTF does not seem to be an adequate progress monitoring tool. It seems that, while RTF boasts face 

validity as an indicator of student comprehension and bears similarity to standardized comprehension tasks, 

variability in both performance and scoring challenge these perceived benefits. Like DORF, it is also possible that 

passage equivalency efforts were not sufficient, and that variability in probe difficulty also contributed to the non-

significant growth findings. 

2. Which CBM probe type (i.e., R-Maze, DORF, or RTF) is the best predictor of reading 

comprehension? 

Results of the HLM model used to evaluate the predictive abilities of the different CBM probe types 

indicated that students’ initial R-Maze score had the strongest relationship with the reading comprehension outcome 

measure. This finding was surprising, and did not support the hypothesis that DORF initial status would be the 

strongest predictor. Indeed, the correlation between R-Maze and reading comprehension was much higher than 

expected (r = .83). Although DORF still showed a strong relationship with reading comprehension (r = .68), this 
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relationship was not a significant predictor in consideration of R-Maze.   Moreover, given the wealth of evidence 

showing DORF as a predictor of reading comprehension, this finding becomes more complicated to interpret. One 

possible interpretation is that many of the studies showing DORF as a good indicator of reading comprehension used 

criterion measures other than the Woodcock Johnson, and, more specifically, the WJ-IV Reading Comprehension – 

Extended cluster (McGrew et al., 2014). This possible explanation comes in light of the reported variability between 

reading comprehension assessments and which specific skills they measure (Keenan et al., 2008); however, it is 

nonetheless surprising. In contrast, the finding that RTF did was not as surprising. Although RTF showed a 

moderate correlation (r = .45) with the comprehension measure, it was not shown to be a significant predictor in 

consideration of all three probe types used in the study. Combined with findings that RTF was not sensitive to 

student reading growth, these results add to the existing literature base that question the utility of RTF measures 

within an RTI framework.  

Overall, study results indicated that R-Maze was sensitive to reading growth in at-risk second-graders and 

was a strong predictor of their performance on a reading comprehension criterion measure. General findings from 

this study contradict some previous findings regarding the utility of read aloud measures within an RTI framework. 

Based on the results of this study, it appears that R-Maze could be a useful addition to early screening efforts, and 

that it may have utility as a progress monitoring tool.  

Limitations 

Despite the significance of certain findings in this study, there are a number of limitations that are 

important to address. In particular, these limitations affect the generalization of the results of this study to other 

populations and measures.  

Firstly, participants in the study were limited to second-grade students from a single school district in 

central Nebraska. The sample also lacked diversity, as the majority of the participants were Caucasian. Other sample 

characteristics limit the generalizability of results and warrant a note of caution regarding the interpretation of 

certain results; namely, the limited sample sizes during each phase. Despite having 75 students in Phase One, only 

22-32 samples of each individual passage of the available progress monitoring pools were gathered. Gathering 

additional samples of each probe during field-testing would serve to improve the power of the mean scores for each 

probe and should result in better passage equivalence. During Phase Two, only 32 students participated. 

Furthermore, these students came from just four schools. When using HLM, sample size at each level is an 
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important consideration, and a small sample size at higher levels affects power at lower levels. Although a specific 

power estimate was not calculated for this study, it is likely underpowered, which affects interpretation of the 

findings. 

In a typical RTI model, progress monitoring is typically employed to track the growth of students receiving 

an intervention. The current study did not employ an intervention component, and students who were receiving 

interventions or reading resource instruction were doing so independently of the current study. Future studies could 

replicate the current study with the addition of an intervention component. Concurrent implementation of an 

evidence-based reading intervention could help make comparisons between expected growth for students in 

intervention vs. control conditions.  

The current study used second-graders as student participants. It is less common for schools to employ the 

use of Maze tasks for reading progress monitoring at this grade level, which was evident in participants’ initial 

unfamiliarity with the task. Indeed, results of this study indicate that certain design elements of R-Maze seem to 

have detracted from its efficient completion. This difficulty was apparent in the study when poorer readers needed 

multiple demonstrations of task completion prior to Maze administration, as well as the necessity to use amended 

scoring procedures to correct for a concern of pro-rated scores that were the results of a high error rate. It was also 

evident in students’ lower scores, which were a combination of lower fluency and higher error rates. These concerns 

complicate interpretation of the findings of the study.  

Another limitation included a wide range of IOA for RTF measures. Despite training and practice sessions, 

IOA on RTF scoring was as low as 33% during Phase Two. A higher rate of passages was evaluated for IOA once 

this concern became apparent; however, there is still a possibility that RTF scores reported in the study are less 

accurate than scores for other probes. 

Future Directions 

Given that reading comprehension becomes a critical component in upper elementary grades, it would be 

relevant to replicate this study with students at or above fourth grade. Use of an older sample may help reduce some 

of the limitations in this study, including students having difficulty understanding the concept of the task. Use of an 

older population would also be warranted given that relationships between reading CBM and reading 

comprehension seem to shift as students enter upper elementary school.  
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The current study could also be replicated with more sound passage equivalency efforts, including using a 

larger sample for establishing mean performance rates and using Euclidean Distance to equate passages. These 

procedures would be especially helpful for R-Maze passages, as most efforts have been directed toward read aloud 

up to this point. Specifically, ranges for WCPM scores exist for determining equivalent reading passage sets, but no 

such criteria exist for R-Maze correct selections.  

Furthermore, form effects and measurement error in CBM could be expanded to skills outside of reading, 

such as early numeracy and mathematics to see if there is inherent variability in different passages.  
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Appendix B: A standard AIMSweb R-Maze passage 
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Appendix C: A standard DIBELS Retell Fluency (RTF) scoring procedure 
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Appendix D: Procedural integrity checklist for DIBELS Oral Reading Fluency (DORF) 
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Appendix E: Procedural integrity checklist for DIBELS Retell Fluency (RTF) 
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Appendix F: Procedural integrity checklist for AIMSweb R-Maze 
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